Solve the following problem and select your answer from the choices given.

For which of the following values of [tex]$x$[/tex] is the function [tex]$f(x)=\sqrt{4-x^2}$[/tex] NOT defined as a real number?

A. -2
B. 0
C. 2
D. 4



Answer :

To solve this problem, we need to determine the values of [tex]\(x\)[/tex] for which the function [tex]\(f(x) = \sqrt{4 - x^2}\)[/tex] is defined as a real number.

The function involves a square root, so the expression inside the square root, [tex]\(4 - x^2\)[/tex], must be non-negative (i.e., [tex]\(4 - x^2 \geq 0\)[/tex]) for [tex]\(f(x)\)[/tex] to be defined as a real number.

Let's analyze the inequality [tex]\(4 - x^2 \geq 0\)[/tex]:

1. Start by isolating [tex]\(x^2\)[/tex]:
[tex]\[ 4 - x^2 \geq 0 \][/tex]

2. Rearrange the inequality to:
[tex]\[ x^2 \leq 4 \][/tex]

3. Solve for the range of [tex]\(x\)[/tex]:
- This implies [tex]\(x^2 \leq 4\)[/tex]. Taking the square root of both sides, we get:
[tex]\[ -2 \leq x \leq 2 \][/tex]

Thus, the function [tex]\(f(x) = \sqrt{4 - x^2}\)[/tex] is defined for all values of [tex]\(x\)[/tex] in the interval [tex]\([-2, 2]\)[/tex].

Now, we need to determine for which of the given values [tex]\(f(x)\)[/tex] is NOT defined. The given choices are: [tex]\(-2\)[/tex], [tex]\(0\)[/tex], [tex]\(2\)[/tex], and [tex]\(4\)[/tex].

- [tex]\(x = -2\)[/tex]: [tex]\[ f(-2) = \sqrt{4 - (-2)^2} = \sqrt{4 - 4} = \sqrt{0} = 0 \quad \text{(defined)} \][/tex]
- [tex]\(x = 0\)[/tex]: [tex]\[ f(0) = \sqrt{4 - 0^2} = \sqrt{4} = 2 \quad \text{(defined)} \][/tex]
- [tex]\(x = 2\)[/tex]: [tex]\[ f(2) = \sqrt{4 - 2^2} = \sqrt{4 - 4} = \sqrt{0} = 0 \quad \text{(defined)} \][/tex]
- [tex]\(x = 4\)[/tex]: [tex]\[ f(4) = \sqrt{4 - 4^2} = \sqrt{4 - 16} = \sqrt{-12} \quad \text{(NOT defined, as the square root of a negative number isn't a real number)} \][/tex]

From this analysis, the function [tex]\(f(x) = \sqrt{4 - x^2}\)[/tex] is NOT defined for [tex]\(x = 4\)[/tex].

Therefore, the value of [tex]\(x\)[/tex] for which the function [tex]\(f(x) = \sqrt{4 - x^2}\)[/tex] is NOT defined as a real number is [tex]\(\boxed{4}\)[/tex].