To find the reflection of the point [tex]\( P = (-3, 4) \)[/tex] over the x-axis, follow these steps:
1. Identify the coordinates of the given point [tex]\( P \)[/tex]. The coordinates are [tex]\( (x, y) = (-3, 4) \)[/tex].
2. When reflecting a point over the x-axis, the x-coordinate remains the same while the y-coordinate is negated.
3. Applying this rule:
- The x-coordinate remains [tex]\( -3 \)[/tex].
- The y-coordinate changes from [tex]\( 4 \)[/tex] to [tex]\( -4 \)[/tex].
4. Therefore, the reflection of the point [tex]\( (-3, 4) \)[/tex] over the x-axis is [tex]\( (-3, -4) \)[/tex].
Thus, [tex]\(
\begin{array}{c}
R _{\text {x-axis }}( P ) \\
([-3],[-4])
\end{array}
\)[/tex]