If [tex]$g(x)=\frac{x+1}{x-2}$[/tex] and [tex]$h(x)=4-x$[/tex], what is the value of [tex]$(g \circ h)(-3)$[/tex]?

A. [tex][tex]$\frac{8}{5}$[/tex][/tex]
B. [tex]$\frac{5}{2}$[/tex]
C. [tex]$\frac{15}{2}$[/tex]
D. [tex][tex]$\frac{18}{5}$[/tex][/tex]



Answer :

To find the value of [tex]\((g \circ h)(-3)\)[/tex], we need to evaluate the function [tex]\(h\)[/tex] at [tex]\(-3\)[/tex] first, and then substitute this result into the function [tex]\(g\)[/tex]. Let's go through the process step-by-step:

1. Evaluate [tex]\(h(-3)\)[/tex]:
Given the function [tex]\(h(x) = 4 - x\)[/tex], we substitute [tex]\(-3\)[/tex] for [tex]\(x\)[/tex]:
[tex]\[ h(-3) = 4 - (-3) = 4 + 3 = 7. \][/tex]
So, [tex]\(h(-3) = 7\)[/tex].

2. Evaluate [tex]\(g(h(-3))\)[/tex]:
Next, we take the result from the first step, which is [tex]\(7\)[/tex], and substitute it into the function [tex]\(g(x)\)[/tex]. The function [tex]\(g(x)\)[/tex] is given by [tex]\(\frac{x+1}{x-2}\)[/tex]. Now we need to evaluate [tex]\(g(7)\)[/tex]:
[tex]\[ g(7) = \frac{7+1}{7-2} = \frac{8}{5}. \][/tex]

Thus, the value of [tex]\((g \circ h)(-3)\)[/tex] is [tex]\(\frac{8}{5}\)[/tex].

Therefore, the correct answer is:
[tex]\[ \boxed{\frac{8}{5}} \][/tex]