What is the symbolic representation for this argument?

If a polygon has exactly three sides, then it is a triangle. Jeri drew a polygon with exactly three sides.
Therefore, Jeri drew a triangle.

A. [tex]p \rightarrow q[/tex]
[tex]q[/tex]
[tex]\therefore p[/tex]

B. [tex]p \rightarrow q[/tex]
[tex]\begin{aligned}
\sim q \\
\therefore \sim p
\end{aligned}[/tex]

C. [tex]p \rightarrow q[/tex]
[tex]\begin{aligned}
\sim p \\
\therefore \sim q
\end{aligned}[/tex]

D. [tex]p \rightarrow q[/tex]
[tex]\begin{array}{l}
p \\
\therefore q
\end{array}[/tex]



Answer :

To determine the symbolic representation for the given argument, let's first define the statement variables:

- Let [tex]\( p \)[/tex] be the statement "A polygon has exactly three sides."
- Let [tex]\( q \)[/tex] be the statement "It is a triangle."

The argument given is:
1. If a polygon has exactly three sides, then it is a triangle. ([tex]\( p \rightarrow q \)[/tex])
2. Jeri drew a polygon with exactly three sides. ([tex]\( p \)[/tex])

From these statements, we can conclude:
3. Therefore, Jeri drew a triangle. ([tex]\( q \)[/tex])

By examining the structure, we see that the form of the argument can be written symbolically as:
1. [tex]\( p \rightarrow q \)[/tex]
2. [tex]\( p \)[/tex]
3. [tex]\( \therefore q \)[/tex]

This corresponds to option D:

D.
[tex]\[ \begin{array}{l} p \rightarrow q \\ p \\ \therefore q \end{array} \][/tex]

Thus, the argument follows the logical form known as modus ponens. This form validates that if [tex]\( p \rightarrow q \)[/tex] and [tex]\( p \)[/tex] are both true, then [tex]\( q \)[/tex] must also be true.