What is the following quotient?

[tex]\[ \frac{3 \sqrt{8}}{4 \sqrt{6}} \][/tex]

A. [tex]\(\frac{12 \sqrt{2}-6 \sqrt{3}}{5}\)[/tex]

B. [tex]\(\frac{3 \sqrt{6}-4 \sqrt{3}}{24}\)[/tex]

C. [tex]\(\frac{\sqrt{3}}{12}\)[/tex]

D. [tex]\(\frac{\sqrt{3}}{2}\)[/tex]



Answer :

Certainly! Let's solve for the following quotient:

[tex]\[ \frac{3 \sqrt{8}}{4 \sqrt{6}} \][/tex]

Follow these steps:

1. Simplify the square roots inside the fraction:
[tex]\[ \sqrt{8} = \sqrt{4 \cdot 2} = 2 \sqrt{2} \][/tex]
[tex]\[ \sqrt{6} = \sqrt{2 \cdot 3} = \sqrt{2} \cdot \sqrt{3} = \sqrt{6} \][/tex]

2. Substitute these simplified forms back into the fraction:
[tex]\[ \frac{3 \sqrt{8}}{4 \sqrt{6}} = \frac{3 \cdot 2 \sqrt{2}}{4 \sqrt{6}} = \frac{6 \sqrt{2}}{4 \sqrt{6}} \][/tex]

3. Simplify the fraction by dividing the numerical coefficients:
[tex]\[ \frac{6 \sqrt{2}}{4 \sqrt{6}} = \frac{6}{4} \cdot \frac{\sqrt{2}}{\sqrt{6}} = \frac{3}{2} \cdot \frac{\sqrt{2}}{\sqrt{6}} \][/tex]

4. Simplify the square roots:
[tex]\[ \frac{\sqrt{2}}{\sqrt{6}} = \frac{\sqrt{2}}{\sqrt{2 \cdot 3}} = \frac{\sqrt{2}}{\sqrt{2} \cdot \sqrt{3}} = \frac{\sqrt{2}}{\sqrt{2} \cdot \sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3} \][/tex]

5. Substitute this back into the simplified fraction:
[tex]\[ \frac{3}{2} \cdot \frac{\sqrt{2}}{\sqrt{6}} = \frac{3}{2} \cdot \frac{\sqrt{3}}{3} = \frac{1}{2} \sqrt{3} = \frac{\sqrt{3}}{2} \][/tex]

So, the simplified form of the quotient [tex]\(\frac{3 \sqrt{8}}{4 \sqrt{6}}\)[/tex] is:

[tex]\[ \boxed{\frac{\sqrt{3}}{2}} \][/tex]