Given the logarithmic equation:

[tex]\log _2 \square - \log _2 3 = \log _2 \frac{5}{3}[/tex]

Solve for the value that should replace the square.



Answer :

Certainly! Let’s solve the given equation step-by-step:

[tex]\[ \log_2 (\square) - \log_2 (3) = \log_2 \left( \frac{5}{3} \right) \][/tex]

### Step 1: Use the properties of logarithms

We know from the properties of logarithms that:

[tex]\[ \log_b (a) - \log_b (c) = \log_b \left( \frac{a}{c} \right) \][/tex]

Using this property, rewrite the left-hand side of the equation:

[tex]\[ \log_2 (\square) - \log_2 (3) = \log_2 \left( \frac{\square}{3} \right) \][/tex]

So, our equation now looks like:

[tex]\[ \log_2 \left( \frac{\square}{3} \right) = \log_2 \left( \frac{5}{3} \right) \][/tex]

### Step 2: Remove the logarithms

Since the bases of the logarithms are the same and the arguments are equal, we can equate the arguments directly:

[tex]\[ \frac{\square}{3} = \frac{5}{3} \][/tex]

### Step 3: Solve for the unknown

To isolate the unknown ([tex]\(\square\)[/tex]), we multiply both sides of the equation by 3:

[tex]\[ \square = \frac{5}{3} \times 3 \][/tex]

### Step 4: Simplify the result

[tex]\[ \square = 5 \][/tex]

Thus, the value that fits in the blank ([tex]\(\square\)[/tex]) is:

[tex]\[ \boxed{5} \][/tex]