A trait has two alleles, and their frequencies are represented by [tex]$p$[/tex] and [tex]$q$[/tex]. If [tex]$p = 0.90$[/tex], what is [tex][tex]$q$[/tex][/tex]?

A. 0.32
B. 0.90
C. 0.95
D. 0.10



Answer :

To determine the value of [tex]\(q\)[/tex] when [tex]\(p = 0.90\)[/tex], we can use the fundamental principle that the sum of the frequencies of the two alleles in a population must equal 1. This means that [tex]\(p + q = 1\)[/tex].

Given:
[tex]\[ p = 0.90 \][/tex]

We need to find [tex]\(q\)[/tex]. From the relationship above, we can solve for [tex]\(q\)[/tex]:

[tex]\[ p + q = 1 \][/tex]

Substituting the given value of [tex]\(p\)[/tex]:

[tex]\[ 0.90 + q = 1 \][/tex]

To isolate [tex]\(q\)[/tex], we can subtract 0.90 from both sides of the equation:

[tex]\[ q = 1 - 0.90 \][/tex]

[tex]\[ q = 0.10 \][/tex]

So, the frequency of allele [tex]\(q\)[/tex] is [tex]\(0.10\)[/tex].

Answer choice [tex]\(D\)[/tex] is correct:
[tex]\[ q = 0.10 \][/tex]