To determine the value of [tex]\(q\)[/tex] when [tex]\(p = 0.90\)[/tex], we can use the fundamental principle that the sum of the frequencies of the two alleles in a population must equal 1. This means that [tex]\(p + q = 1\)[/tex].
Given:
[tex]\[ p = 0.90 \][/tex]
We need to find [tex]\(q\)[/tex]. From the relationship above, we can solve for [tex]\(q\)[/tex]:
[tex]\[ p + q = 1 \][/tex]
Substituting the given value of [tex]\(p\)[/tex]:
[tex]\[ 0.90 + q = 1 \][/tex]
To isolate [tex]\(q\)[/tex], we can subtract 0.90 from both sides of the equation:
[tex]\[ q = 1 - 0.90 \][/tex]
[tex]\[ q = 0.10 \][/tex]
So, the frequency of allele [tex]\(q\)[/tex] is [tex]\(0.10\)[/tex].
Answer choice [tex]\(D\)[/tex] is correct:
[tex]\[ q = 0.10 \][/tex]