The graph of the reciprocal parent function, [tex]f(x) = \frac{1}{x}[/tex], is shifted 5 units up and 8 units to the left to create the graph of [tex]g(x)[/tex]. What function is [tex]g(x)[/tex]?

A. [tex]g(x) = \frac{1}{x-5} + 8[/tex]
B. [tex]g(x) = \frac{1}{x+8} + 5[/tex]
C. [tex]g(x) = \frac{1}{x-8} + 5[/tex]
D. [tex]g(x) = \frac{1}{x+5} + 8[/tex]



Answer :

Certainly! Let's carefully determine the equation of the new function [tex]\( g(x) \)[/tex] based on the given transformations:

1. Starting Point:
The parent function is:
[tex]\[ f(x) = \frac{1}{x} \][/tex]

2. Shifting 8 Units to the Left:
When you shift a function horizontally, you replace [tex]\( x \)[/tex] with [tex]\( x + c \)[/tex], where [tex]\( c \)[/tex] is the number of units shifted. For a shift 8 units to the left:
[tex]\[ f(x + 8) = \frac{1}{x + 8} \][/tex]

3. Shifting 5 Units Up:
When you shift a function vertically, you add [tex]\( c \)[/tex] to the entire function, where [tex]\( c \)[/tex] is the number of units shifted up:
[tex]\[ g(x) = \frac{1}{x + 8} + 5 \][/tex]

So the function [tex]\( g(x) \)[/tex] after shifting the graph of the reciprocal function [tex]\( 5 \)[/tex] units up and [tex]\( 8 \)[/tex] units to the left is:
[tex]\[ g(x) = \frac{1}{x + 8} + 5 \][/tex]

Hence, the correct answer is:
[tex]\[ \boxed{B. \ g(x) = \frac{1}{x + 8} + 5} \][/tex]