The graph of the reciprocal parent function, [tex]f(x)=\frac{1}{x}[/tex], is shifted 6 units down and 1 unit to the right to create the graph of [tex]g(x)[/tex]. What function is [tex]g(x)[/tex]?

A. [tex]g(x)=\frac{1}{x+1}-6[/tex]

B. [tex]g(x)=\frac{1}{x-6}-1[/tex]

C. [tex]g(x)=\frac{1}{x-1}-6[/tex]

D. [tex]g(x)=\frac{1}{x-6}-1[/tex]



Answer :

To determine the function [tex]\( g(x) \)[/tex] based on the transformations applied to the parent function [tex]\( f(x) = \frac{1}{x} \)[/tex], let's analyze the shifts step by step.

1. Right Shift by 1 Unit:
Shifting a function horizontally to the right by 1 unit means replacing [tex]\( x \)[/tex] with [tex]\( x - 1 \)[/tex] in the function [tex]\( f(x) \)[/tex].
Thus, the function [tex]\( f(x) = \frac{1}{x} \)[/tex] transforms to [tex]\( f(x) = \frac{1}{x - 1} \)[/tex].

2. Down Shift by 6 Units:
Shifting a function vertically down by 6 units means subtracting 6 from the function.
Therefore, the function [tex]\( \frac{1}{x - 1} \)[/tex] becomes [tex]\( g(x) = \frac{1}{x - 1} - 6 \)[/tex].

After applying both transformations, the resulting function is:

[tex]\[ g(x) = \frac{1}{x - 1} - 6 \][/tex]

Let's verify which option this matches:

A. [tex]\( g(x) = \frac{1}{x + 1} - 6 \)[/tex]

B. [tex]\( g(x) = \frac{1}{x - 6} - 1 \)[/tex]

C. [tex]\( g(x) = \frac{1}{x - 1} - 6 \)[/tex]

D. [tex]\( g(x) = \frac{1}{x - 6} - 1 \)[/tex]

The correct function [tex]\( g(x) \)[/tex] is indeed [tex]\( g(x) = \frac{1}{x - 1} - 6 \)[/tex], which corresponds to option C.

So the correct answer is:
[tex]\[ \boxed{3} \][/tex]