Answer :

Sure! Let's expand the given expression step-by-step.

The given expression is:
[tex]\[ (6 - 5x) \left(3 - \overline{7x - 5} \right) \][/tex]

First, simplify the expression inside the parenthesis:
[tex]\[ 3 - (7x - 5) \][/tex]
This simplifies to:
[tex]\[ 3 - 7x + 5 = 8 - 7x \][/tex]

Now, substitute this back into the original expression:
[tex]\[ (6 - 5x)(8 - 7x) \][/tex]

Next, we apply the distributive property (also known as the FOIL method for binomials) to expand the expression:

1. Multiply the first terms:
[tex]\[ 6 \cdot 8 = 48 \][/tex]

2. Multiply the outer terms:
[tex]\[ 6 \cdot (-7x) = -42x \][/tex]

3. Multiply the inner terms:
[tex]\[ -5x \cdot 8 = -40x \][/tex]

4. Multiply the last terms:
[tex]\[ -5x \cdot (-7x) = 35x^2 \][/tex]

Now, combine all these terms together:
[tex]\[ 48 - 42x - 40x + 35x^2 \][/tex]

Finally, combine the like terms:
[tex]\[ 35x^2 - 82x + 48 \][/tex]

So, the expanded form of [tex]\((6 - 5x) \left(3 - (7x - 5) \right)\)[/tex] is:
[tex]\[ 35x^2 - 82x + 48 \][/tex]