The function [tex]$h(x)$[/tex] is a transformation of the square root parent function, [tex]$f(x)=\sqrt{x}$[/tex]. What function is [tex][tex]$h(x)$[/tex][/tex]?

A. [tex]$h(x)=\sqrt{x}+6$[/tex]
B. [tex]$h(x)=\sqrt{x+6}$[/tex]
C. [tex][tex]$h(x)=\sqrt{x}-6$[/tex][/tex]
D. [tex]$h(x)=\sqrt{x-6}$[/tex]



Answer :

Sure! Let's examine each option to determine which one correctly describes the transformation applied to the square root parent function [tex]\( f(x) = \sqrt{x} \)[/tex].

1. Option A: [tex]\( h(x) = \sqrt{x} + 6 \)[/tex]
- This represents a vertical shift. The graph of [tex]\( f(x) = \sqrt{x} \)[/tex] is shifted upwards by 6 units.

2. Option B: [tex]\( h(x) = \sqrt{x + 6} \)[/tex]
- This represents a horizontal shift. The graph of [tex]\( f(x) = \sqrt{x} \)[/tex] is shifted to the left by 6 units.

3. Option C: [tex]\( h(x) = \sqrt{x} - 6 \)[/tex]
- This represents a vertical shift. The graph of [tex]\( f(x) = \sqrt{x} \)[/tex] is shifted downwards by 6 units.

4. Option D: [tex]\( h(x) = \sqrt{x - 6} \)[/tex]
- This represents a horizontal shift. The graph of [tex]\( f(x) = \sqrt{x} \)[/tex] is shifted to the right by 6 units.

Now let's consider the function transformations one by one:

### Vertical Shifts
- Vertical Shift Up: If a function [tex]\( f(x) \)[/tex] is transformed to [tex]\( f(x) + c \)[/tex], it means the graph is shifted upwards by [tex]\( c \)[/tex] units. For option A ([tex]\( h(x) = \sqrt{x} + 6 \)[/tex]), the graph shifts up by 6 units.
- Vertical Shift Down: If a function [tex]\( f(x) \)[/tex] is transformed to [tex]\( f(x) - c \)[/tex], it means the graph is shifted downwards by [tex]\( c \)[/tex] units. For option C ([tex]\( h(x) = \sqrt{x} - 6 \)[/tex]), the graph shifts down by 6 units.

### Horizontal Shifts
- Horizontal Shift Left: If a function [tex]\( f(x) \)[/tex] is transformed to [tex]\( f(x + c) \)[/tex], it means the graph is shifted to the left by [tex]\( c \)[/tex] units. For option B ([tex]\( h(x) = \sqrt{x + 6} \)[/tex]), the graph shifts left by 6 units.
- Horizontal Shift Right: If a function [tex]\( f(x) \)[/tex] is transformed to [tex]\( f(x - c) \)[/tex], it means the graph is shifted to the right by [tex]\( c \)[/tex] units. For option D ([tex]\( h(x) = \sqrt{x - 6} \)[/tex]), the graph shifts right by 6 units.

### Final Choice
Given the transformations:

- Option A represents a vertical shift upwards by 6 units.
- Option B represents a horizontal shift to the left by 6 units.
- Option C represents a vertical shift downwards by 6 units.
- Option D represents a horizontal shift to the right by 6 units.

So, the appropriate transformations given the parent function [tex]\( f(x) = \sqrt{x} \)[/tex] are accurately described by each of these options based on the types of shifts they perform.