33. How many minutes are there in each of the following periods?

a. [tex]1 \frac{1}{2}[/tex] hours

b. 3 hours

c. [tex]2 \frac{1}{4}[/tex] hours

d. 1 day



Answer :

To determine how many minutes are in each given period, we need to convert the hours into minutes by using the fact that one hour is equal to 60 minutes.

### Part a: [tex]\(1 \frac{1}{2}\)[/tex] hours
First, convert [tex]\(1 \frac{1}{2}\)[/tex] hours into a decimal:
[tex]\[ 1 \frac{1}{2} \text{ hours} = 1 + \frac{1}{2} = 1.5 \text{ hours} \][/tex]

Next, convert the hours to minutes:
[tex]\[ 1.5 \text{ hours} \times 60 \text{ minutes/hour} = 90 \text{ minutes} \][/tex]

Thus, [tex]\(1 \frac{1}{2}\)[/tex] hours is equal to 90 minutes.

### Part b: [tex]\(2 \frac{1}{4}\)[/tex] hours
First, convert [tex]\(2 \frac{1}{4}\)[/tex] hours into a decimal:
[tex]\[ 2 \frac{1}{4} \text{ hours} = 2 + \frac{1}{4} = 2.25 \text{ hours} \][/tex]

Next, convert the hours to minutes:
[tex]\[ 2.25 \text{ hours} \times 60 \text{ minutes/hour} = 135 \text{ minutes} \][/tex]

Thus, [tex]\(2 \frac{1}{4}\)[/tex] hours is equal to 135 minutes.

### Part c: 3 hours
Convert the hours directly to minutes:
[tex]\[ 3 \text{ hours} \times 60 \text{ minutes/hour} = 180 \text{ minutes} \][/tex]

Thus, 3 hours is equal to 180 minutes.

### Part d: 1 day (24 hours)
Convert the hours directly to minutes:
[tex]\[ 24 \text{ hours} \times 60 \text{ minutes/hour} = 1440 \text{ minutes} \][/tex]

Thus, 1 day (24 hours) is equal to 1440 minutes.

To summarize:
- [tex]\(1 \frac{1}{2}\)[/tex] hours = 90 minutes
- [tex]\(2 \frac{1}{4}\)[/tex] hours = 135 minutes
- 3 hours = 180 minutes
- 1 day (24 hours) = 1440 minutes