Answer :
To determine how many minutes are in each given period, we need to convert the hours into minutes by using the fact that one hour is equal to 60 minutes.
### Part a: [tex]\(1 \frac{1}{2}\)[/tex] hours
First, convert [tex]\(1 \frac{1}{2}\)[/tex] hours into a decimal:
[tex]\[ 1 \frac{1}{2} \text{ hours} = 1 + \frac{1}{2} = 1.5 \text{ hours} \][/tex]
Next, convert the hours to minutes:
[tex]\[ 1.5 \text{ hours} \times 60 \text{ minutes/hour} = 90 \text{ minutes} \][/tex]
Thus, [tex]\(1 \frac{1}{2}\)[/tex] hours is equal to 90 minutes.
### Part b: [tex]\(2 \frac{1}{4}\)[/tex] hours
First, convert [tex]\(2 \frac{1}{4}\)[/tex] hours into a decimal:
[tex]\[ 2 \frac{1}{4} \text{ hours} = 2 + \frac{1}{4} = 2.25 \text{ hours} \][/tex]
Next, convert the hours to minutes:
[tex]\[ 2.25 \text{ hours} \times 60 \text{ minutes/hour} = 135 \text{ minutes} \][/tex]
Thus, [tex]\(2 \frac{1}{4}\)[/tex] hours is equal to 135 minutes.
### Part c: 3 hours
Convert the hours directly to minutes:
[tex]\[ 3 \text{ hours} \times 60 \text{ minutes/hour} = 180 \text{ minutes} \][/tex]
Thus, 3 hours is equal to 180 minutes.
### Part d: 1 day (24 hours)
Convert the hours directly to minutes:
[tex]\[ 24 \text{ hours} \times 60 \text{ minutes/hour} = 1440 \text{ minutes} \][/tex]
Thus, 1 day (24 hours) is equal to 1440 minutes.
To summarize:
- [tex]\(1 \frac{1}{2}\)[/tex] hours = 90 minutes
- [tex]\(2 \frac{1}{4}\)[/tex] hours = 135 minutes
- 3 hours = 180 minutes
- 1 day (24 hours) = 1440 minutes
### Part a: [tex]\(1 \frac{1}{2}\)[/tex] hours
First, convert [tex]\(1 \frac{1}{2}\)[/tex] hours into a decimal:
[tex]\[ 1 \frac{1}{2} \text{ hours} = 1 + \frac{1}{2} = 1.5 \text{ hours} \][/tex]
Next, convert the hours to minutes:
[tex]\[ 1.5 \text{ hours} \times 60 \text{ minutes/hour} = 90 \text{ minutes} \][/tex]
Thus, [tex]\(1 \frac{1}{2}\)[/tex] hours is equal to 90 minutes.
### Part b: [tex]\(2 \frac{1}{4}\)[/tex] hours
First, convert [tex]\(2 \frac{1}{4}\)[/tex] hours into a decimal:
[tex]\[ 2 \frac{1}{4} \text{ hours} = 2 + \frac{1}{4} = 2.25 \text{ hours} \][/tex]
Next, convert the hours to minutes:
[tex]\[ 2.25 \text{ hours} \times 60 \text{ minutes/hour} = 135 \text{ minutes} \][/tex]
Thus, [tex]\(2 \frac{1}{4}\)[/tex] hours is equal to 135 minutes.
### Part c: 3 hours
Convert the hours directly to minutes:
[tex]\[ 3 \text{ hours} \times 60 \text{ minutes/hour} = 180 \text{ minutes} \][/tex]
Thus, 3 hours is equal to 180 minutes.
### Part d: 1 day (24 hours)
Convert the hours directly to minutes:
[tex]\[ 24 \text{ hours} \times 60 \text{ minutes/hour} = 1440 \text{ minutes} \][/tex]
Thus, 1 day (24 hours) is equal to 1440 minutes.
To summarize:
- [tex]\(1 \frac{1}{2}\)[/tex] hours = 90 minutes
- [tex]\(2 \frac{1}{4}\)[/tex] hours = 135 minutes
- 3 hours = 180 minutes
- 1 day (24 hours) = 1440 minutes