Answer :

Let's simplify the given expression:

[tex]\[ \frac{a^{n+2} - 2a^n + 3a^{n+1}}{a^n + a^{n+1}} \][/tex]

We will start by rewriting and simplifying the numerator and the denominator.

### Step 1: Rewrite the Terms

- Rewrite [tex]\(a^{n+2}\)[/tex] as [tex]\(a^2 \cdot a^n\)[/tex]
- Rewrite [tex]\(a^{n+1}\)[/tex] as [tex]\(a \cdot a^n\)[/tex]

So, the expression becomes:
[tex]\[ \frac{a^2 \cdot a^n - 2a^n + 3a \cdot a^n}{a^n + a \cdot a^n} \][/tex]

### Step 2: Factor out [tex]\(a^n\)[/tex]

Now, factor [tex]\(a^n\)[/tex] out of both the numerator and the denominator:

- Numerator: [tex]\(a^n(a^2 - 2 + 3a)\)[/tex]
- Denominator: [tex]\(a^n(1 + a)\)[/tex]

So the expression now is:
[tex]\[ \frac{a^n(a^2 - 2 + 3a)}{a^n(1 + a)} \][/tex]

### Step 3: Cancel out [tex]\(a^n\)[/tex]

Since [tex]\(a^n\)[/tex] is common to both the numerator and the denominator, we can cancel it out:
[tex]\[ \frac{a^2 - 2 + 3a}{1 + a} \][/tex]

### Step 4: Simplify the Numerator

The numerator can further be simplified. Rewriting in standard form:
[tex]\[ a^2 + 3a - 2 \][/tex]

So, we have:
[tex]\[ \frac{a^2 + 3a - 2}{1 + a} \][/tex]

### Summary

By following the above steps, the simplified form of the given expression is:
[tex]\[ \frac{a^2 + 3a - 2}{1 + a} \][/tex]

This is the final simplified expression.

Other Questions