[tex]\[
\begin{array}{l}
\frac{5^0 \cdot 5^3}{5^2} = \cdots \\
\therefore \left(a^2\right)^4 \cdot c^3 \cdot c^{-2} = \cdots \\
\therefore \frac{P^3 \cdot \left(Q^1\right)^2}{P^2} = \cdots
\end{array}
\][/tex]



Answer :

Let's simplify each of the given expressions step-by-step:

### 1. [tex]\(\frac{5^0 \cdot 5^3}{5^2}\)[/tex]

Using the properties of exponents, specifically:

[tex]\[ \frac{a^m \cdot a^n}{a^p} = a^{m+n-p} \][/tex]

First, apply the exponent rules to the numerator:

[tex]\[ 5^0 \cdot 5^3 = 5^{0+3} = 5^3 \][/tex]

Now consider the whole expression:

[tex]\[ \frac{5^3}{5^2} = 5^{3-2} = 5^1 = 5 \][/tex]

So, the expression simplifies to:

[tex]\[ \boxed{5} \][/tex]

### 2. [tex]\((a^2)^4 \cdot c^3 \cdot c^{-2}\)[/tex]

Using the property of exponents that states [tex]\((a^m)^n = a^{m \cdot n}\)[/tex] and [tex]\(a^m \cdot a^n = a^{m+n}\)[/tex]:

First, simplify [tex]\((a^2)^4\)[/tex]:

[tex]\[ (a^2)^4 = a^{2 \cdot 4} = a^8 \][/tex]

Next, simplify [tex]\(c^3 \cdot c^{-2}\)[/tex]:

[tex]\[ c^3 \cdot c^{-2} = c^{3-2} = c^1 = c \][/tex]

Combine the simplified expressions:

[tex]\[ a^8 \cdot c \][/tex]

So, the expression simplifies to:

[tex]\[ \boxed{a^8 \cdot c} \][/tex]

### 3. [tex]\(\frac{P^3 \cdot (Q^1)^2}{P^2}\)[/tex]

Using the properties of exponents, specifically [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]:

First, simplify [tex]\((Q^1)^2\)[/tex]:

[tex]\[ (Q^1)^2 = Q^{1 \cdot 2} = Q^2 \][/tex]

Now, consider the entire expression with [tex]\(P^3\)[/tex] and [tex]\(P^2\)[/tex]:

[tex]\[ \frac{P^3 \cdot Q^2}{P^2} = \frac{P^{3} \cdot Q^2}{P^2} = P^{3-2} \cdot Q^2 = P^1 \cdot Q^2 = P \cdot Q^2 \][/tex]

So, the expression simplifies to:

[tex]\[ \boxed{P \cdot Q^2} \][/tex]