Answer :

Answer:To find the product of \((4c - 2)(c + 2)\), you can use the distributive property (also known as FOIL method for binomials). Here's the step-by-step process:

1. **Distribute each term in the first binomial to each term in the second binomial:**

  \[

  (4c - 2)(c + 2)

  \]

  - Distribute \(4c\) to both \(c\) and \(2\):

    \[

    4c \cdot c = 4c^2

    \]

    \[

    4c \cdot 2 = 8c

    \]

  - Distribute \(-2\) to both \(c\) and \(2\):

    \[

    -2 \cdot c = -2c

    \]

    \[

    -2 \cdot 2 = -4

    \]

2. **Combine all the terms:**

  \[

  4c^2 + 8c - 2c - 4

  \]

3. **Combine the like terms (\(8c\) and \(-2c\)):**

  \[

  4c^2 + (8c - 2c) - 4

  \]

  \[

  4c^2 + 6c - 4

  \]

So, the product of \((4c - 2)(c + 2)\) is \(4c^2 + 6c - 4\).