Answered

Quadrilateral [tex]$ABCD$[/tex] has the following vertices:
- [tex]$A(6, 8)$[/tex]
- [tex][tex]$B(6, -5)$[/tex][/tex]
- [tex]$C(-5, -10)$[/tex]
- [tex]$D(-5, 3)$[/tex]

Is quadrilateral [tex][tex]$ABCD$[/tex][/tex] a rhombus, and why?

Choose 1 answer:
A. Yes, because [tex]$AB = BC = CD = AD$[/tex].
B. Yes, because [tex]$\overline{AB} \parallel \overline{CD}$[/tex], and [tex][tex]$\overline{BC} \parallel \overline{AD}$[/tex][/tex].
C. No, because [tex]$\overline{AB}$[/tex] is longer than [tex]$\overline{BC}$[/tex].



Answer :

To determine whether quadrilateral [tex]\(ABCD\)[/tex] is a rhombus, we need to check the properties of a rhombus. A rhombus is defined as a quadrilateral where all four sides are of equal length.

Let's calculate the lengths of the sides [tex]\(AB\)[/tex], [tex]\(BC\)[/tex], [tex]\(CD\)[/tex], and [tex]\(DA\)[/tex] using the distance formula. The distance formula between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:

[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]

First, we calculate the length of [tex]\(AB\)[/tex]:
- Coordinates of [tex]\(A\)[/tex] are [tex]\((6, 8)\)[/tex]
- Coordinates of [tex]\(B\)[/tex] are [tex]\((6, -5)\)[/tex]

[tex]\[ AB = \sqrt{(6 - 6)^2 + (-5 - 8)^2} = \sqrt{0 + (-13)^2} = \sqrt{169} = 13 \][/tex]

Next, we calculate the length of [tex]\(BC\)[/tex]:
- Coordinates of [tex]\(B\)[/tex] are [tex]\((6, -5)\)[/tex]
- Coordinates of [tex]\(C\)[/tex] are [tex]\((-5, -10)\)[/tex]

[tex]\[ BC = \sqrt{(-5 - 6)^2 + (-10 - (-5))^2} = \sqrt{(-11)^2 + (-5)^2} = \sqrt{121 + 25} = \sqrt{146} \approx 12.08 \][/tex]

Then, we calculate the length of [tex]\(CD\)[/tex]:
- Coordinates of [tex]\(C\)[/tex] are [tex]\((-5, -10)\)[/tex]
- Coordinates of [tex]\(D\)[/tex] are [tex]\((-5, 3)\)[/tex]

[tex]\[ CD = \sqrt{(-5 - (-5))^2 + (3 - (-10))^2} = \sqrt{0 + (13)^2} = \sqrt{169} = 13 \][/tex]

Finally, we calculate the length of [tex]\(DA\)[/tex]:
- Coordinates of [tex]\(D\)[/tex] are [tex]\((-5, 3)\)[/tex]
- Coordinates of [tex]\(A\)[/tex] are [tex]\((6, 8)\)[/tex]

[tex]\[ DA = \sqrt{(6 - (-5))^2 + (8 - 3)^2} = \sqrt{(11)^2 + (5)^2} = \sqrt{121 + 25} = \sqrt{146} \approx 12.08 \][/tex]

We observe that the sides [tex]\(AB\)[/tex] and [tex]\(CD\)[/tex] both measure 13 units, while [tex]\(BC\)[/tex] and [tex]\(DA\)[/tex] both measure approximately 12.08 units. Since the four sides are not all of equal length, quadrilateral [tex]\(ABCD\)[/tex] is not a rhombus.

Therefore, the correct answer is:

[tex]\[ \boxed{C} \text{ No, because } \overline{A B} \text{ is longer than } \overline{B C}. \][/tex]