Answer :

To solve for [tex]\( x \)[/tex] in the equation:

[tex]\[ 3x = 6x - 2 \][/tex]

Follow these steps:

1. Isolate the variable terms on one side:

To get all the [tex]\( x \)[/tex]-terms on the same side, subtract [tex]\( 3x \)[/tex] from both sides of the equation:

[tex]\[ 3x - 3x = 6x - 3x - 2 \][/tex]

Simplifying this, we get:

[tex]\[ 0 = 3x - 2 \][/tex]

2. Get the constant term on the other side:

Add 2 to both sides of the equation to isolate the term with [tex]\( x \)[/tex]:

[tex]\[ 0 + 2 = 3x - 2 + 2 \][/tex]

Simplifying this, we get:

[tex]\[ 2 = 3x \][/tex]

3. Solve for [tex]\( x \)[/tex]:

Divide both sides by 3 to solve for [tex]\( x \)[/tex]:

[tex]\[ x = \frac{2}{3} \][/tex]

So, the solution for the equation [tex]\( 3x = 6x - 2 \)[/tex] is:

[tex]\[ x = \frac{2}{3} \][/tex]

Numerically, this value is approximately:

[tex]\[ x = 0.6666666666666666 \][/tex]