Answer :

To solve the expression [tex]\(10 \frac{3}{10} - 3 \cdot \frac{4}{6}\)[/tex], let's break it down into several steps for clarity.

1. Convert the mixed number to an improper fraction or a decimal:
[tex]\[ 10 \frac{3}{10} \][/tex]
This can be seen as:
[tex]\[ 10 + \frac{3}{10} \][/tex]
Converting the fractional part to a decimal:
[tex]\[ \frac{3}{10} = 0.3 \][/tex]
So:
[tex]\[ 10 \frac{3}{10} = 10 + 0.3 = 10.3 \][/tex]

2. Simplify the expression [tex]\(3 \cdot \frac{4}{6}\)[/tex]:
First, simplify the fraction [tex]\(\frac{4}{6}\)[/tex]:
[tex]\[ \frac{4}{6} = \frac{2 \times 2}{2 \times 3} = \frac{2}{3} \][/tex]
Now, multiply this fraction by 3:
[tex]\[ 3 \cdot \frac{2}{3} = 3 \times \frac{2}{3} = \frac{3 \times 2}{3} = \frac{6}{3} = 2 \][/tex]

3. Subtract the result from the mixed number:
We need to find:
[tex]\[ 10.3 - 2 \][/tex]
Perform the subtraction:
[tex]\[ 10.3 - 2 = 8.3 \][/tex]

Thus, the result of the expression [tex]\(10 \frac{3}{10} - 3 \cdot \frac{4}{6}\)[/tex] is:
[tex]\[ 8.3 \][/tex]