Given the quadratic equation

[tex]\[ y = a(x - 2)(x + 4) \][/tex]

where [tex]\( a \)[/tex] is a nonzero constant. The graph of the equation in the [tex]\( xy \)[/tex]-plane is a parabola with vertex [tex]\((c, d)\)[/tex].

Which of the following is equal to [tex]\( d \)[/tex]?

A) [tex]\( -9a \)[/tex]
B) [tex]\( -8a \)[/tex]
C) [tex]\( -5a \)[/tex]
D) [tex]\( -2a \)[/tex]



Answer :

To find the value of [tex]\( d \)[/tex] in the given quadratic equation [tex]\( y = a(x-2)(x+4) \)[/tex], we'll follow these steps:

1. Identify the properties of the parabola:
The given equation [tex]\( y = a(x-2)(x+4) \)[/tex] can be expanded into standard quadratic form, but it's also beneficial to recognize the roots and symmetry properties directly from the factored form.

2. Determine the vertex [tex]\( x \)[/tex]-coordinate:
The roots of the quadratic equation are [tex]\( x = 2 \)[/tex] and [tex]\( x = -4 \)[/tex]. The vertex [tex]\( x \)[/tex]-coordinate is the midpoint of the roots.
[tex]\[ c = \frac{2 + (-4)}{2} = \frac{-2}{2} = -1 \][/tex]

3. Find the vertex [tex]\( y \)[/tex]-coordinate [tex]\( d \)[/tex]:
To find [tex]\( d \)[/tex], substitute [tex]\( x = c = -1 \)[/tex] back into the quadratic equation [tex]\( y = a(x-2)(x+4) \)[/tex].
[tex]\[ d = a(-1 - 2)(-1 + 4) \][/tex]
Simplify inside the parentheses:
[tex]\[ d = a(-3)(3) \][/tex]
Multiplying the values:
[tex]\[ d = a \cdot (-3) \cdot 3 \implies d = a \cdot (-9) \implies d = -9a \][/tex]

Thus, the value of [tex]\( d \)[/tex] is equal to [tex]\( -9a \)[/tex], and the correct answer is:

A) [tex]\( -9a \)[/tex]