Given the functions:
[tex]\[ f(x) = x^2 - 5 \][/tex]
[tex]\[ g(x) = 5x + 4 \][/tex]

a. [tex]\((f + g)(x)\)[/tex]
b. [tex]\((f + g)(3)\)[/tex]
c. [tex]\((f - g)(x)\)[/tex]
d. [tex]\((f - g)(5)\)[/tex]



Answer :

Let's tackle the given problem step-by-step.

### Part a: (f + g)(x)

To find [tex]\((f + g)(x)\)[/tex], we need to add the functions [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex].

Given:
[tex]\[ f(x) = x^2 - 5 \][/tex]
[tex]\[ g(x) = 5x + 4 \][/tex]

First, sum them up:
[tex]\[ (f + g)(x) = f(x) + g(x) = (x^2 - 5) + (5x + 4) \][/tex]

Combine like terms:
[tex]\[ (f + g)(x) = x^2 + 5x - 1 \][/tex]

### Part b: (f + g)(3)

To find [tex]\((f + g)(3)\)[/tex], substitute [tex]\(x = 3\)[/tex] into the expression found in part a.

Given:
[tex]\[ (f + g)(x) = x^2 + 5x - 1 \][/tex]

Substitute [tex]\(x = 3\)[/tex]:
[tex]\[ (f + g)(3) = 3^2 + 5(3) - 1 \][/tex]
[tex]\[ (f + g)(3) = 9 + 15 - 1 \][/tex]
[tex]\[ (f + g)(3) = 23 \][/tex]

So,
[tex]\((f + g)(3) = 23\)[/tex]

### Part c: (f - g)(x)

To find [tex]\((f - g)(x)\)[/tex], we need to subtract the function [tex]\(g(x)\)[/tex] from [tex]\(f(x)\)[/tex].

Given:
[tex]\[ f(x) = x^2 - 5 \][/tex]
[tex]\[ g(x) = 5x + 4 \][/tex]

Subtract them:
[tex]\[ (f - g)(x) = f(x) - g(x) = (x^2 - 5) - (5x + 4) \][/tex]

Distribute the negative sign:
[tex]\[ (f - g)(x) = x^2 - 5 - 5x - 4 \][/tex]

Combine like terms:
[tex]\[ (f - g)(x) = x^2 - 5x - 9 \][/tex]

### Part d: (f - g)(5)

To find [tex]\((f - g)(5)\)[/tex], substitute [tex]\(x = 5\)[/tex] into the expression found in part c.

Given:
[tex]\[ (f - g)(x) = x^2 - 5x - 9 \][/tex]

Substitute [tex]\(x = 5\)[/tex]:
[tex]\[ (f - g)(5) = 5^2 - 5(5) - 9 \][/tex]
[tex]\[ (f - g)(5) = 25 - 25 - 9 \][/tex]
[tex]\[ (f - g)(5) = -9 \][/tex]

So,
[tex]\((f - g)(5) = -9\)[/tex]

### Summary

- [tex]\((f + g)(x) = x^2 + 5x - 1\)[/tex]
- [tex]\((f + g)(3) = 23\)[/tex]
- [tex]\((f - g)(x) = x^2 - 5x - 9\)[/tex]
- [tex]\((f - g)(5) = -9\)[/tex]

These are the solutions for the given parts a, b, c, and d.