The table gives a partial set of values of a polynomial [tex]h(x)[/tex], which has a leading coefficient of 1.

[tex]\[
\begin{array}{|c|c|c|c|c|c|}
\hline
x & -2 & 0 & 1 & 2 & 3 \\
\hline
h(x) & 0 & -12 & 0 & 8 & 0 \\
\hline
\end{array}
\][/tex]

If every [tex]x[/tex]-intercept of [tex]h(x)[/tex] is shown in the table and has a multiplicity of one, what is the equation of the polynomial function?

A. [tex]h(x)=x^3-2x^2-5x+6[/tex]

B. [tex]h(x)=x^3-6x^2+11x-6[/tex]

C. [tex]h(x)=x^3+2x^2-5x-6[/tex]

D. [tex]h(x)=x^4+14x^3+19x^2-66x-72[/tex]



Answer :

To determine the polynomial [tex]\( h(x) \)[/tex] from the given table, we use the information provided: every [tex]\( x \)[/tex]-intercept of [tex]\( h(x) \)[/tex] is shown in the table and has a multiplicity of one.

Here are the steps to solve this:

1. Identify the [tex]\( x \)[/tex]-intercepts from the table:
We are given:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & -2 & 0 & 1 & 2 & 3 \\ \hline h(x) & 0 & -12 & 0 & 8 & 0 \\ \hline \end{array} \][/tex]
The [tex]\( x \)[/tex]-intercepts are the values of [tex]\( x \)[/tex] where [tex]\( h(x) = 0 \)[/tex], which are:
[tex]\[ x = -2, 1, 3 \][/tex]

2. Form the polynomial based on its roots:
Since each [tex]\( x \)[/tex]-intercept is shown in the table and has a multiplicity of one, the polynomial can be constructed by multiplying the factors corresponding to each root:
[tex]\[ h(x) = k(x + 2)(x - 1)(x - 3) \][/tex]
Given that the leading coefficient is 1, [tex]\( k \)[/tex] must be 1.

So, the polynomial takes the form:
[tex]\[ h(x) = (x + 2)(x - 1)(x - 3) \][/tex]

3. Expand the polynomial:
[tex]\[ \begin{aligned} h(x) &= (x + 2)(x - 1)(x - 3) \\ &= (x + 2)\left[(x - 1)(x - 3)\right] \\ &= (x + 2)\left[x^2 - 4x + 3\right] \\ &= x(x^2 - 4x + 3) + 2(x^2 - 4x + 3) \\ &= x^3 - 4x^2 + 3x + 2x^2 - 8x + 6 \\ &= x^3 - 2x^2 - 5x + 6 \end{aligned} \][/tex]

4. Match the polynomial with the given options:
The expanded polynomial is:
[tex]\[ h(x) = x^3 - 2x^2 - 5x + 6 \][/tex]

Therefore, the correct polynomial that fits the given values and conditions is:

[tex]\[ h(x) = x^3 - 2x^2 - 5x + 6 \][/tex]

So, the equation of the polynomial function is:
[tex]\[ \boxed{x^3 - 2x^2 - 5x + 6} \][/tex]