Answer :

Certainly! Let's break down the problem and solve it step by step.

We need to evaluate the sum:
[tex]\[1800 \left(\frac{1}{3}\right) + 930 \left(\frac{1}{6}\right) + 2450 \left(\frac{1}{4}\right) + 1290 \left(\frac{1}{4}\right)\][/tex]

### Step-by-Step Solution:

1. Evaluate [tex]\(1800 \left(\frac{1}{3}\right)\)[/tex]:
[tex]\[1800 \times \frac{1}{3} = 600.0\][/tex]

2. Evaluate [tex]\(930 \left(\frac{1}{6}\right)\)[/tex]:
[tex]\[930 \times \frac{1}{6} = 155.0\][/tex]

3. Evaluate [tex]\(2450 \left(\frac{1}{4}\right)\)[/tex]:
[tex]\[2450 \times \frac{1}{4} = 612.5\][/tex]

4. Evaluate [tex]\(1290 \left(\frac{1}{4}\right)\)[/tex]:
[tex]\[1290 \times \frac{1}{4} = 322.5\][/tex]

Now, sum up all these evaluated terms:
[tex]\[ 600.0 + 155.0 + 612.5 + 322.5 \][/tex]

5. Add the results together:
[tex]\[600.0 + 155.0 = 755.0\][/tex]
[tex]\[755.0 + 612.5 = 1367.5\][/tex]
[tex]\[1367.5 + 322.5 = 1690.0\][/tex]

Therefore:
[tex]\[ 1800 \left(\frac{1}{3}\right) + 930 \left(\frac{1}{6}\right) + 2450 \left(\frac{1}{4}\right) + 1290 \left(\frac{1}{4}\right) = 1690.0 \][/tex]

The final result is:
[tex]\[ 1690.0 \][/tex]