Calculate the following, giving your answer to an appropriate degree of accuracy:

a. [tex]23.456 \times 17.89[/tex]

b. [tex]0.4 \times 12.62[/tex]

c. [tex]18 \times 9.24[/tex]

d. [tex]76.24 \div 3.2[/tex]

e. [tex]7.6^2[/tex]

f. [tex]16.42^3[/tex]

g. [tex]\frac{2.3 \times 3.37}{4}[/tex]

h. [tex]\frac{8.31}{2.02}[/tex]

i. [tex]9.2 \div 4^2[/tex]



Answer :

Certainly! Here are the step-by-step calculations for each of the given expressions, providing the answers to an appropriate degree of accuracy:

(a) [tex]\(23.456 \times 17.89\)[/tex]:

We start by multiplying the numbers and then round the result to two decimal places, which is common for multiplication involving large numbers.

[tex]\[ 23.456 \times 17.89 = 419.63 \][/tex]

So, [tex]\(23.456 \times 17.89 = 419.63\)[/tex].

(b) [tex]\(0.4 \times 12.62\)[/tex]:

Next, we multiply these numbers and round the answer to two decimal places.

[tex]\[ 0.4 \times 12.62 = 5.05 \][/tex]

Thus, [tex]\(0.4 \times 12.62 = 5.05\)[/tex].

(c) [tex]\(18 \times 9.24\)[/tex]:

We perform the multiplication and round the results to two decimal places.

[tex]\[ 18 \times 9.24 = 166.32 \][/tex]

Therefore, [tex]\(18 \times 9.24 = 166.32\)[/tex].

(d) [tex]\(76.24 \div 3.2\)[/tex]:

We divide these numbers and round the result to two decimal places.

[tex]\[ 76.24 \div 3.2 = 23.82 \][/tex]

Hence, [tex]\(76.24 \div 3.2 = 23.82\)[/tex].

(e) [tex]\(7.6^2\)[/tex]:

We calculate the square of the number and round to two decimal places.

[tex]\[ 7.6^2 = 57.76 \][/tex]

So, [tex]\(7.6^2 = 57.76\)[/tex].

(f) [tex]\(16.42^3\)[/tex]:

We cube the number, which typically is rounded to three decimal places for cubic values.

[tex]\[ 16.42^3 = 4427.101 \][/tex]

Thus, [tex]\(16.42^3 = 4427.101\)[/tex].

(g) [tex]\(\frac{2.3 \times 3.37}{4}\)[/tex]:

We first multiply the numbers in the numerator and then divide by 4, rounding the result to three decimal places.

[tex]\[ \frac{2.3 \times 3.37}{4} = 1.938 \][/tex]

Therefore, [tex]\(\frac{2.3 \times 3.37}{4} = 1.938\)[/tex].

(h) [tex]\(\frac{8.31}{2.02}\)[/tex]:

We divide these numbers and round the result to three decimal places.

[tex]\[ \frac{8.31}{2.02} = 4.114 \][/tex]

Hence, [tex]\(\frac{8.31}{2.02} = 4.114\)[/tex].

(i) [tex]\(9.2 \div 4^2\)[/tex]:

We first calculate [tex]\(4^2\)[/tex] and then divide 9.2 by this result, rounding to two decimal places.

[tex]\[ 4^2 = 16 \][/tex]

[tex]\[ 9.2 \div 16 = 0.57 \][/tex]

Thus, [tex]\(9.2 \div 4^2 = 0.57\)[/tex].

In summary:
1. [tex]\(23.456 \times 17.89 = 419.63\)[/tex]
2. [tex]\(0.4 \times 12.62 = 5.05\)[/tex]
3. [tex]\(18 \times 9.24 = 166.32\)[/tex]
4. [tex]\(76.24 \div 3.2 = 23.82\)[/tex]
5. [tex]\(7.6^2 = 57.76\)[/tex]
6. [tex]\(16.42^3 = 4427.101\)[/tex]
7. [tex]\(\frac{2.3 \times 3.37}{4} = 1.938\)[/tex]
8. [tex]\(\frac{8.31}{2.02} = 4.114\)[/tex]
9. [tex]\(9.2 \div 4^2 = 0.57\)[/tex]