Use the box method to distribute and simplify [tex](-6x + 5)(-6x - 6)[/tex]. Drag and drop the terms to the correct locations of the table.

[tex]\[
(-6x + 5)(-6x - 6)
\][/tex]

\begin{tabular}{|c|c|c|}
\hline
& -6x & -6 \\ \hline
-6x & & \\ \hline
5 & & \\ \hline
\end{tabular}



Answer :

Sure, let's use the box method (also known as the area model) to distribute and simplify [tex]\((-6x + 5)(-6x - 6)\)[/tex].

First, set up the box by writing the two binomial expressions along the top and side:

[tex]\[ \begin{array}{c|c|c|} & -6x & -6 \\ \hline -6x & & \\ \hline 5 & & \\ \hline \end{array} \][/tex]

Now, fill in each cell by multiplying the corresponding terms from the top row and the left column.

### Step-by-Step Calculations:

1. Calculate the product of [tex]\((-6x) \cdot (-6x)\)[/tex]:
[tex]\[ (-6x) \cdot (-6x) = 36x^2 \][/tex]

2. Calculate the product of [tex]\((-6x) \cdot (-6)\)[/tex]:
[tex]\[ (-6x) \cdot (-6) = 36x \][/tex]

3. Calculate the product of [tex]\(5 \cdot (-6x)\)[/tex]:
[tex]\[ 5 \cdot (-6x) = -30x \][/tex]

4. Calculate the product of [tex]\(5 \cdot (-6)\)[/tex]:
[tex]\[ 5 \cdot (-6) = -30 \][/tex]

Now, place these products into the appropriate cells of the box:

[tex]\[ \begin{array}{c|c|c|} & -6x & -6 \\ \hline -6x & 36x^2 & 36x \\ \hline 5 & -30x & -30 \\ \hline \end{array} \][/tex]

### Summarize:

Finally, add all the terms together:

[tex]\[ 36x^2 + 36x - 30x - 30 \][/tex]

Combine like terms:

[tex]\[ 36x^2 + (36x - 30x) - 30 = 36x^2 + 6x - 30 \][/tex]

So, the simplified form of the expression [tex]\((-6x + 5)(-6x - 6)\)[/tex] is:

[tex]\[ 36x^2 + 6x - 30 \][/tex]