Solve the inequality [tex]$0 \ \textgreater \ -3x - 2x$[/tex].

A. [tex]$x \ \textgreater \ -36$[/tex]
B. [tex][tex]$x \ \textgreater \ 1$[/tex][/tex]
C. [tex]$x \ \textgreater \ -28$[/tex]
D. [tex]$x \ \textgreater \ 0$[/tex]



Answer :

Sure, let's solve the inequality step-by-step.

We start with the given inequality:
[tex]\[ 0 > -3x - 2x \][/tex]

First, combine the terms involving [tex]\( x \)[/tex] on the right-hand side:
[tex]\[ 0 > -5x \][/tex]

Next, we want to isolate [tex]\( x \)[/tex]. To do that, divide both sides of the inequality by [tex]\(-5\)[/tex]. Remember, when you divide or multiply an inequality by a negative number, you must reverse the inequality sign:
[tex]\[ \frac{0}{-5} < x \][/tex]

Simplify this:
[tex]\[ 0 < x \][/tex]

This simplifies to:
[tex]\[ x > 0 \][/tex]

Thus, the solution to the inequality [tex]\( 0 > -3x - 2x \)[/tex] is:
[tex]\[ x > 0 \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{D. \, x > 0} \][/tex]