Solve for [tex]\( d \)[/tex].

[tex]\[
4 - d \ \textless \ 4 + d
\][/tex]

A. [tex]\( d \ \textgreater \ 0 \)[/tex]
B. [tex]\( d \ \textgreater \ -4 \)[/tex]
C. [tex]\( d \ \textgreater \ 8 \)[/tex]
D. [tex]\( d \ \textgreater \ -8 \)[/tex]



Answer :

To solve for [tex]\( d \)[/tex] given the inequalities:

[tex]\[ 4 - d < 4 + d \][/tex]
[tex]\( d > 0 \)[/tex]
[tex]\( d > -4 \)[/tex]
[tex]\( d > 8 \)[/tex]
[tex]\( d > -8 \)[/tex]

Let's break this down step by step:

1. Solve the inequality [tex]\( 4 - d < 4 + d \)[/tex]:
[tex]\[ 4 - d < 4 + d \][/tex]
Subtract [tex]\( 4 \)[/tex] from both sides:
[tex]\[ -d < d \][/tex]
Add [tex]\( d \)[/tex] to both sides:
[tex]\[ 0 < 2d \][/tex]
Divide both sides by [tex]\( 2 \)[/tex]:
[tex]\[ 0 < d \][/tex]
This simplifies to:
[tex]\[ d > 0 \][/tex]

2. Consider the inequalities:

- [tex]\( d > 0 \)[/tex]
- [tex]\( d > -4 \)[/tex]
- [tex]\( d > 8 \)[/tex]
- [tex]\( d > -8 \)[/tex]

The strictest constraint among these is [tex]\( d > 8 \)[/tex]. Even though [tex]\( d \)[/tex] being greater than all the negative values and zero is true, the most limiting condition here is [tex]\( d > 8 \)[/tex].

Thus, the solution to the given inequalities, considering the strictest condition, is:

[tex]\[ d = 8 \][/tex]