Answer :
Let's fill out the table with a detailed step-by-step solution for converting each given equation into its standard form and identifying the coefficients [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] for each quadratic equation.
### Equation 1: [tex]\( 4(x^2 + 2x - 4) = 0 \)[/tex]
1. Use the distributive property to multiply 4 with each term inside the parentheses:
[tex]\[ 4 \cdot x^2 + 4 \cdot 2x + 4 \cdot (-4) = 0 \][/tex]
2. Simplify:
[tex]\[ 4x^2 + 8x - 16 = 0 \][/tex]
3. Identify the coefficients:
[tex]\[ \begin{align*} a &= 4 \\ b &= 8 \\ c &= -16 \end{align*} \][/tex]
### Equation 2: [tex]\( 2x^2 + 5 = 3x \)[/tex]
1. Subtract [tex]\(3x\)[/tex] from both sides to bring all terms to one side, creating a standard form:
[tex]\[ 2x^2 + 5 - 3x = 0 \][/tex]
2. Rearrange the terms:
[tex]\[ 2x^2 - 3x + 5 = 0 \][/tex]
3. Identify the coefficients:
[tex]\[ \begin{align*} a &= 2 \\ b &= -3 \\ c &= 5 \end{align*} \][/tex]
### Equation 3: [tex]\( x^2 + 8x + 4 = 6 \)[/tex]
1. Subtract 6 from both sides to bring all terms to one side, creating a standard form:
[tex]\[ x^2 + 8x + 4 - 6 = 0 \][/tex]
2. Simplify:
[tex]\[ x^2 + 8x - 2 = 0 \][/tex]
3. Identify the coefficients:
[tex]\[ \begin{align*} a &= 1 \\ b &= 8 \\ c &= -2 \end{align*} \][/tex]
### Equation 4: [tex]\( 3(x^2 - 2x + 4) = 0 \)[/tex]
1. Use the distributive property to multiply 3 with each term inside the parentheses:
[tex]\[ 3 \cdot x^2 + 3 \cdot (-2x) + 3 \cdot 4 = 0 \][/tex]
2. Simplify:
[tex]\[ 3x^2 - 6x + 12 = 0 \][/tex]
3. Identify the coefficients:
[tex]\[ \begin{align*} a &= 3 \\ b &= -6 \\ c &= 12 \end{align*} \][/tex]
### Completed Table:
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline Given Equation & Steps Needed & Standard Form & $a$, $b$, $c$ \\ \hline \multirow{2}{}{$4(x^2 + 2x - 4) = 0$} & \multirow{2}{}{\begin{tabular}{l} Use Distributive \\ property. Multiply 4 to \\ all terms enclosed. \end{tabular}} & \multirow{2}{*}{$4x^2 + 8x - 16 = 0$} & $a = 4$ \\ & & & $b = 8$ \\ & & & $c = -16$ \\ \hline \multirow{3}{*}{$2x^2 + 5 = 3x$} & \multirow{3}{*}{\begin{tabular}{l} Addition property \\ Add $-3x$ to both sides \\ of the equation. \end{tabular}} & \multirow{3}{*}{$2x^2 - 3x + 5 = 0$} & $a = 2$ \\ & & & $b = -3$ \\ & & & $c = 5$ \\ \hline \multirow{3}{*}{$x^2 + 8x + 4 = 6$} & \multirow{3}{*}{\begin{tabular}{l} Subtract 6 from \\ both sides. \end{tabular}} & \multirow{3}{*}{$x^2 + 8x - 2 = 0$} & $a = 1$ \\ & & & $b = 8$ \\ & & & $c = -2$ \\ \hline \multirow{2}{*}{$3(x^2 - 2x + 4) = 0$} & \multirow{2}{*}{\begin{tabular}{l} Use Distributive \\ property. Multiply 3 to \\ all terms enclosed. \end{tabular}} & \multirow{2}{*}{$3x^2 - 6x + 12 = 0$} & $a = 3$ \\ & & & $b = -6$ \\ & & & $c = 12$ \\ \hline \end{tabular} \][/tex]
### Equation 1: [tex]\( 4(x^2 + 2x - 4) = 0 \)[/tex]
1. Use the distributive property to multiply 4 with each term inside the parentheses:
[tex]\[ 4 \cdot x^2 + 4 \cdot 2x + 4 \cdot (-4) = 0 \][/tex]
2. Simplify:
[tex]\[ 4x^2 + 8x - 16 = 0 \][/tex]
3. Identify the coefficients:
[tex]\[ \begin{align*} a &= 4 \\ b &= 8 \\ c &= -16 \end{align*} \][/tex]
### Equation 2: [tex]\( 2x^2 + 5 = 3x \)[/tex]
1. Subtract [tex]\(3x\)[/tex] from both sides to bring all terms to one side, creating a standard form:
[tex]\[ 2x^2 + 5 - 3x = 0 \][/tex]
2. Rearrange the terms:
[tex]\[ 2x^2 - 3x + 5 = 0 \][/tex]
3. Identify the coefficients:
[tex]\[ \begin{align*} a &= 2 \\ b &= -3 \\ c &= 5 \end{align*} \][/tex]
### Equation 3: [tex]\( x^2 + 8x + 4 = 6 \)[/tex]
1. Subtract 6 from both sides to bring all terms to one side, creating a standard form:
[tex]\[ x^2 + 8x + 4 - 6 = 0 \][/tex]
2. Simplify:
[tex]\[ x^2 + 8x - 2 = 0 \][/tex]
3. Identify the coefficients:
[tex]\[ \begin{align*} a &= 1 \\ b &= 8 \\ c &= -2 \end{align*} \][/tex]
### Equation 4: [tex]\( 3(x^2 - 2x + 4) = 0 \)[/tex]
1. Use the distributive property to multiply 3 with each term inside the parentheses:
[tex]\[ 3 \cdot x^2 + 3 \cdot (-2x) + 3 \cdot 4 = 0 \][/tex]
2. Simplify:
[tex]\[ 3x^2 - 6x + 12 = 0 \][/tex]
3. Identify the coefficients:
[tex]\[ \begin{align*} a &= 3 \\ b &= -6 \\ c &= 12 \end{align*} \][/tex]
### Completed Table:
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline Given Equation & Steps Needed & Standard Form & $a$, $b$, $c$ \\ \hline \multirow{2}{}{$4(x^2 + 2x - 4) = 0$} & \multirow{2}{}{\begin{tabular}{l} Use Distributive \\ property. Multiply 4 to \\ all terms enclosed. \end{tabular}} & \multirow{2}{*}{$4x^2 + 8x - 16 = 0$} & $a = 4$ \\ & & & $b = 8$ \\ & & & $c = -16$ \\ \hline \multirow{3}{*}{$2x^2 + 5 = 3x$} & \multirow{3}{*}{\begin{tabular}{l} Addition property \\ Add $-3x$ to both sides \\ of the equation. \end{tabular}} & \multirow{3}{*}{$2x^2 - 3x + 5 = 0$} & $a = 2$ \\ & & & $b = -3$ \\ & & & $c = 5$ \\ \hline \multirow{3}{*}{$x^2 + 8x + 4 = 6$} & \multirow{3}{*}{\begin{tabular}{l} Subtract 6 from \\ both sides. \end{tabular}} & \multirow{3}{*}{$x^2 + 8x - 2 = 0$} & $a = 1$ \\ & & & $b = 8$ \\ & & & $c = -2$ \\ \hline \multirow{2}{*}{$3(x^2 - 2x + 4) = 0$} & \multirow{2}{*}{\begin{tabular}{l} Use Distributive \\ property. Multiply 3 to \\ all terms enclosed. \end{tabular}} & \multirow{2}{*}{$3x^2 - 6x + 12 = 0$} & $a = 3$ \\ & & & $b = -6$ \\ & & & $c = 12$ \\ \hline \end{tabular} \][/tex]