Answer :

To evaluate the given expression [tex]\(\frac{\sec A - \tan A}{\sec A + \tan A}\)[/tex] and compare it against [tex]\(1 - 2 \sec A \cdot \tan A + 2 \tan^2 A\)[/tex], let's break it down step by step:

1. Start with the original expression:

[tex]\[ \frac{\sec A - \tan A}{\sec A + \tan A} \][/tex]

2. Simplify by multiplying the numerator and the denominator by the conjugate of the denominator:

This will involve multiplying the numerator and the denominator by [tex]\((\sec A - \tan A)\)[/tex]:

[tex]\[ \frac{(\sec A - \tan A)(\sec A - \tan A)}{(\sec A + \tan A)(\sec A - \tan A)} \][/tex]

3. Apply the difference of squares:

The denominator simplifies using the difference of squares:

[tex]\[ (\sec A + \tan A)(\sec A - \tan A) = \sec^2 A - \tan^2 A \][/tex]

For the numerator, we use:

[tex]\[ (\sec A - \tan A)^2 = \sec^2 A - 2 \sec A \tan A + \tan^2 A \][/tex]

So the expression becomes:

[tex]\[ \frac{\sec^2 A - 2 \sec A \tan A + \tan^2 A}{\sec^2 A - \tan^2 A} \][/tex]

4. Recall the Pythagorean identity:

[tex]\[ \sec^2 A = 1 + \tan^2 A \][/tex]

Substituting this into our denominator:

[tex]\[ \sec^2 A - \tan^2 A = (1 + \tan^2 A) - \tan^2 A = 1 \][/tex]

So our expression simplifies to:

[tex]\[ \frac{\sec^2 A - 2 \sec A \tan A + \tan^2 A}{1} = \sec^2 A - 2 \sec A \tan A + \tan^2 A \][/tex]

5. Substitute [tex]\(\sec^2 A = 1 + \tan^2 A\)[/tex] back in the simplified numerator:

[tex]\[ \sec^2 A - 2 \sec A \tan A + \tan^2 A = (1 + \tan^2 A) - 2 \sec A \tan A + \tan^2 A \][/tex]

Simplifying further gives:

[tex]\[ 1 + \tan^2 A + \tan^2 A - 2 \sec A \tan A = 1 + 2 \tan^2 A - 2 \sec A \tan A \][/tex]

6. Final simplified form:

We end up with the simplified expression:

[tex]\[ 1 - 2 \sec A \tan A + 2 \tan^2 A \][/tex]

Therefore, although we initially set out to prove that:

[tex]\[ \frac{\sec A - \tan A}{\sec A + \tan A} \stackrel{?}{=} 1 - 2 \sec A \tan A + 2 \tan^2 A \][/tex]

It turns out that it simplifies to:

[tex]\[ \frac{\sec A - \tan A}{\sec A + \tan A} = 1 - 2 \sec A \tan A + 2 \tan^2 A \text{ only if } \sec(A)=\cos(A) \text{ and } \tan(A)=\sin(A) \][/tex]

Thus, their equality is generally false unless a specific case occurs.