Which answer choice is a solution to the inequality [tex]$1.5x + 3.75 \geq 5.5$[/tex]?

A. [tex]-1[/tex]
B. [tex]1[/tex]
C. [tex]1.5[/tex]
D. [tex]0[/tex]



Answer :

To determine which answer choices are solutions to the inequality [tex]\(1.5x + 3.75 \geq 5.5\)[/tex], we will evaluate each given choice one by one.

1. Evaluate for [tex]\( x = -1 \)[/tex]:
[tex]\[ 1.5(-1) + 3.75 \geq 5.5 \quad \Rightarrow \quad -1.5 + 3.75 \geq 5.5 \quad \Rightarrow \quad 2.25 \geq 5.5 \][/tex]
This is not true. Hence, [tex]\( x = -1 \)[/tex] is not a solution.

2. Evaluate for [tex]\( x = 0 \)[/tex]:
[tex]\[ 1.5(0) + 3.75 \geq 5.5 \quad \Rightarrow \quad 0 + 3.75 \geq 5.5 \quad \Rightarrow \quad 3.75 \geq 5.5 \][/tex]
This is not true. Hence, [tex]\( x = 0 \)[/tex] is not a solution.

3. Evaluate for [tex]\( x = 1 \)[/tex]:
[tex]\[ 1.5(1) + 3.75 \geq 5.5 \quad \Rightarrow \quad 1.5 + 3.75 \geq 5.5 \quad \Rightarrow \quad 5.25 \geq 5.5 \][/tex]
This is not true. Hence, [tex]\( x = 1 \)[/tex] is not a solution.

4. Evaluate for [tex]\( x = 1.5 \)[/tex]:
[tex]\[ 1.5(1.5) + 3.75 \geq 5.5 \quad \Rightarrow \quad 2.25 + 3.75 \geq 5.5 \quad \Rightarrow \quad 6.0 \geq 5.5 \][/tex]
This is true. Hence, [tex]\( x = 1.5 \)[/tex] is a solution.

Based on the evaluations, the only value that satisfies the inequality [tex]\(1.5x + 3.75 \geq 5.5\)[/tex] is:
[tex]\[ \boxed{1.5} \][/tex]