Write the equation for the graph with vertex [tex]\((-6, 2)\)[/tex] and focus [tex]\((-7.25, 2)\)[/tex].

A. [tex]\((y-2)^2 = -5(x+6)\)[/tex]

B. [tex]\((y+6)^2 = -5(x-2)\)[/tex]

C. [tex]\((x+6)^2 = -5(y+2)\)[/tex]

D. [tex]\((y-6)^2 = 5(x+6)\)[/tex]



Answer :

To find the equation of the parabola with the given vertex [tex]\((-6, 2)\)[/tex] and focus [tex]\((-7.25, 2)\)[/tex], we need to follow a systematic approach.

First, let's recall that the general equation for a parabola with a horizontal axis of symmetry (vertex form) is:

[tex]\[ (y - k)^2 = 4p(x - h) \][/tex]

where:
- [tex]\((h, k)\)[/tex] is the vertex of the parabola,
- [tex]\(p\)[/tex] is the distance from the vertex to the focus.

### Step-by-Step Solution:

1. Identify the vertex and the focus:

The vertex of the parabola is [tex]\((-6, 2)\)[/tex].
The focus of the parabola is [tex]\((-7.25, 2)\)[/tex].

2. Determine the distance [tex]\(p\)[/tex]:

The distance [tex]\(p\)[/tex] is the horizontal distance between the vertex and the focus. Since the focus is to the left of the vertex:

[tex]\[ p = \text{distance from } (-6, 2) \text{ to } (-7.25, 2) = |-7.25 - (-6)| = |-7.25 + 6| = |-1.25| = 1.25 \][/tex]

However, since the focus is to the left of the vertex, [tex]\(p\)[/tex] is negative:

[tex]\[ p = -1.25 \][/tex]

3. Substitute the values into the standard form equation:

We know [tex]\( (h, k) = (-6, 2) \)[/tex] and [tex]\(p = -1.25\)[/tex]. Substitute these values into the formula:

[tex]\[ (y - 2)^2 = 4(-1.25)(x + 6) \][/tex]

4. Simplify the expression:

[tex]\[ (y - 2)^2 = 4 \times -1.25 \times (x + 6) \][/tex]
[tex]\[ (y - 2)^2 = -5(x + 6) \][/tex]

Therefore, the correct equation for the parabola with vertex [tex]\((-6, 2)\)[/tex] and focus [tex]\((-7.25, 2)\)[/tex] is:

[tex]\[ (y - 2)^2 = -5(x + 6) \][/tex]

Thus, the correct choice is:

[tex]\[ (y - 2)^2 = -5(x + 6) \][/tex]