Sure, let's use the distributive property to simplify the expression [tex]\(4(v+2)\)[/tex].
The distributive property states that for any numbers [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex],
[tex]\[a(b + c) = ab + ac\][/tex]
In this case, [tex]\(a = 4\)[/tex], [tex]\(b = v\)[/tex], and [tex]\(c = 2\)[/tex]. Applying the distributive property:
[tex]\[4(v + 2) = 4 \cdot v + 4 \cdot 2\][/tex]
Now, let's perform the multiplications individually:
1. [tex]\(4 \cdot v = 4v\)[/tex]
2. [tex]\(4 \cdot 2 = 8\)[/tex]
Combining these results, we get:
[tex]\[4(v + 2) = 4v + 8\][/tex]
So, the simplified expression is [tex]\(4v + 8\)[/tex].