Answer :

Sure, let's use the distributive property to simplify the expression [tex]\(4(v+2)\)[/tex].

The distributive property states that for any numbers [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex],

[tex]\[a(b + c) = ab + ac\][/tex]

In this case, [tex]\(a = 4\)[/tex], [tex]\(b = v\)[/tex], and [tex]\(c = 2\)[/tex]. Applying the distributive property:

[tex]\[4(v + 2) = 4 \cdot v + 4 \cdot 2\][/tex]

Now, let's perform the multiplications individually:

1. [tex]\(4 \cdot v = 4v\)[/tex]
2. [tex]\(4 \cdot 2 = 8\)[/tex]

Combining these results, we get:

[tex]\[4(v + 2) = 4v + 8\][/tex]

So, the simplified expression is [tex]\(4v + 8\)[/tex].