Answer :
To solve the equation [tex]\(\sqrt[3]{6x + 4} - 8 = -4\)[/tex], follow these steps:
1. Start by isolating the cube root term:
[tex]\[ \sqrt[3]{6x + 4} = -4 + 8 \][/tex]
Simplifying gives:
[tex]\[ \sqrt[3]{6x + 4} = 4 \][/tex]
2. Cube both sides to eliminate the cube root:
[tex]\[ ( \sqrt[3]{6x + 4} )^3 = 4^3 \][/tex]
This simplifies to:
[tex]\[ 6x + 4 = 64 \][/tex]
3. Solve for [tex]\(x\)[/tex]:
[tex]\[ 6x + 4 = 64 \][/tex]
Subtract 4 from both sides:
[tex]\[ 6x = 60 \][/tex]
Divide both sides by 6:
[tex]\[ x = \frac{60}{6} \][/tex]
Simplifying gives:
[tex]\[ x = 10 \][/tex]
The solution is [tex]\( x = 10 \)[/tex].
1. Start by isolating the cube root term:
[tex]\[ \sqrt[3]{6x + 4} = -4 + 8 \][/tex]
Simplifying gives:
[tex]\[ \sqrt[3]{6x + 4} = 4 \][/tex]
2. Cube both sides to eliminate the cube root:
[tex]\[ ( \sqrt[3]{6x + 4} )^3 = 4^3 \][/tex]
This simplifies to:
[tex]\[ 6x + 4 = 64 \][/tex]
3. Solve for [tex]\(x\)[/tex]:
[tex]\[ 6x + 4 = 64 \][/tex]
Subtract 4 from both sides:
[tex]\[ 6x = 60 \][/tex]
Divide both sides by 6:
[tex]\[ x = \frac{60}{6} \][/tex]
Simplifying gives:
[tex]\[ x = 10 \][/tex]
The solution is [tex]\( x = 10 \)[/tex].