Select the correct answer.

Which inequality represents all the solutions of [tex]-2(3x + 6) \geq 4(x + 7)[/tex]?

A. [tex]x \geq -4[/tex]
B. [tex]x \leq -4[/tex]
C. [tex]x \geq 8[/tex]
D. [tex]x \leq 8[/tex]



Answer :

To solve the inequality [tex]\(-2(3x + 6) \geq 4(x + 7)\)[/tex], follow these steps:

1. Expand the expressions on both sides:
- Distribute [tex]\(-2\)[/tex] on the left-hand side:
[tex]\[ -2(3x + 6) = -6x - 12 \][/tex]
- Distribute [tex]\(4\)[/tex] on the right-hand side:
[tex]\[ 4(x + 7) = 4x + 28 \][/tex]

2. Rewrite the inequality with the expanded expressions:
[tex]\[ -6x - 12 \geq 4x + 28 \][/tex]

3. Isolate the variable [tex]\(x\)[/tex] on one side of the inequality:
- Start by adding [tex]\(6x\)[/tex] to both sides:
[tex]\[ -12 \geq 10x + 28 \][/tex]
- Next, subtract [tex]\(28\)[/tex] from both sides:
[tex]\[ -40 \geq 10x \][/tex]

4. Solve for [tex]\(x\)[/tex]:
- Divide both sides by [tex]\(10\)[/tex]:
[tex]\[ -4 \geq x \][/tex]
- This can also be written as:
[tex]\[ x \leq -4 \][/tex]

So, the inequality that represents all the solutions is [tex]\(x \leq -4\)[/tex].

Therefore, the correct answer is:
[tex]\[ \boxed{B. \, x \leq -4} \][/tex]