Select the correct answer.

What is the domain of function [tex]h[/tex]?

[tex]h(x) = \sqrt{x - 7} + 5[/tex]

A. [tex]x \geq 5[/tex]
B. [tex]x \geq 7[/tex]
C. [tex]x \leq -7[/tex]
D. [tex]x \leq 5[/tex]



Answer :

To determine the domain of the function [tex]\( h(x) = \sqrt{x-7} + 5 \)[/tex], follow these steps:

1. Identify the condition for the square root: The expression inside the square root, [tex]\( x-7 \)[/tex], must be non-negative. This is because the square root of a negative number is not a real number.

2. Set up the inequality: To ensure [tex]\( x-7 \)[/tex] is non-negative, we need:
[tex]\[ x - 7 \geq 0 \][/tex]

3. Solve the inequality: Add 7 to both sides of the inequality:
[tex]\[ x \geq 7 \][/tex]

4. Conclusion: Therefore, the domain of the function [tex]\( h(x) \)[/tex] is all [tex]\( x \)[/tex] values that are greater than or equal to 7.

Given the provided options:
- A. [tex]\( x \geq 5 \)[/tex]
- B. [tex]\( x \geq 7 \)[/tex]
- C. [tex]\( x \leq -7 \)[/tex]
- D. [tex]\( x \leq 5 \)[/tex]

The correct answer is:
B. [tex]\( x \geq 7 \)[/tex]