Answer :

To find the square root of [tex]\( 3(\sqrt{3}) \)[/tex], let's denote the expression inside the square root as follows:

[tex]\[ x = 3(\sqrt{3}) \][/tex]

We want to find the value of [tex]\( \sqrt{x} \)[/tex].

Given that [tex]\( x = 3(\sqrt{3}) \)[/tex]:

1. Calculate the numerical value of [tex]\( x \)[/tex]:
[tex]\[ x = 3 \cdot \sqrt{3} \][/tex]
Evaluating inside the parenthesis:
[tex]\[ \sqrt{3} \approx 1.732 \][/tex]
Multiplying by 3:
[tex]\[ 3 \cdot 1.732 \approx 5.196 \][/tex]

Now we have:
[tex]\[ x \approx 5.196 \][/tex]

2. Now find the square root of [tex]\( x \)[/tex]:
[tex]\[ \sqrt{x} = \sqrt{5.196} \][/tex]

Calculating the square root:
[tex]\[ \sqrt{5.196} \approx 2.2795 \][/tex]

The result is approximately:
[tex]\[ 2.2795 \][/tex]

So, the correct answer from the given options is not listed explicitly as a choice. However, with the given numerical result, we understand that the correct value is approximately:

[tex]\[ \boxed{2.2795} \][/tex]

None of the provided options correspond to this exact result, but knowing the accurate numerical solution reaffirms the calculation steps taken.