To find the square root of [tex]\( 3(\sqrt{3}) \)[/tex], let's denote the expression inside the square root as follows:
[tex]\[
x = 3(\sqrt{3})
\][/tex]
We want to find the value of [tex]\( \sqrt{x} \)[/tex].
Given that [tex]\( x = 3(\sqrt{3}) \)[/tex]:
1. Calculate the numerical value of [tex]\( x \)[/tex]:
[tex]\[
x = 3 \cdot \sqrt{3}
\][/tex]
Evaluating inside the parenthesis:
[tex]\[
\sqrt{3} \approx 1.732
\][/tex]
Multiplying by 3:
[tex]\[
3 \cdot 1.732 \approx 5.196
\][/tex]
Now we have:
[tex]\[
x \approx 5.196
\][/tex]
2. Now find the square root of [tex]\( x \)[/tex]:
[tex]\[
\sqrt{x} = \sqrt{5.196}
\][/tex]
Calculating the square root:
[tex]\[
\sqrt{5.196} \approx 2.2795
\][/tex]
The result is approximately:
[tex]\[
2.2795
\][/tex]
So, the correct answer from the given options is not listed explicitly as a choice. However, with the given numerical result, we understand that the correct value is approximately:
[tex]\[
\boxed{2.2795}
\][/tex]
None of the provided options correspond to this exact result, but knowing the accurate numerical solution reaffirms the calculation steps taken.