Use the tables below to find [tex]\((p+q)(2)\)[/tex].

[tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $p(x)$ \\
\hline
4 & -1 \\
\hline
2 & 3 \\
\hline
-3 & 2 \\
\hline
\end{tabular}
\][/tex]

[tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $q(x)$ \\
\hline
4 & 1 \\
\hline
2 & -2 \\
\hline
-3 & 5 \\
\hline
\end{tabular}
\][/tex]

[tex]\[
(p+q)(2) =
\][/tex]



Answer :

To find [tex]\((p+q)(2)\)[/tex], we need to look at the values of the functions [tex]\(p(x)\)[/tex] and [tex]\(q(x)\)[/tex] at [tex]\(x = 2\)[/tex] and then sum these values.

Let's go step-by-step:

1. Identify the value of [tex]\(p(2)\)[/tex] from the table for [tex]\(p(x)\)[/tex]:
[tex]\[ \begin{array}{|c|c|} \hline x & p(x) \\ \hline 4 & -1 \\ \hline 2 & 3 \\ \hline -3 & 2 \\ \hline \end{array} \][/tex]
From the table, we see that [tex]\(p(2) = 3\)[/tex].

2. Identify the value of [tex]\(q(2)\)[/tex] from the table for [tex]\(q(x)\)[/tex]:
[tex]\[ \begin{array}{|c|c|} \hline x & q(x) \\ \hline 4 & 1 \\ \hline 2 & -2 \\ \hline -3 & 5 \\ \hline \end{array} \][/tex]
From the table, we see that [tex]\(q(2) = -2\)[/tex].

3. Calculate [tex]\((p+q)(2)\)[/tex] by summing [tex]\(p(2)\)[/tex] and [tex]\(q(2)\)[/tex]:
[tex]\[ (p+q)(2) = p(2) + q(2) = 3 + (-2) = 1 \][/tex]

Therefore, the value of [tex]\((p+q)(2)\)[/tex] is [tex]\(1\)[/tex].