Use proportional reasoning to determine the value of [tex]$a$[/tex] in the proportion shown below.

[tex]\[ \frac{3}{5} = \frac{a + 5}{25} \][/tex]

A. [tex]a = 1[/tex]
B. [tex]a = 25[/tex]
C. [tex]a = 10[/tex]
D. [tex]a = 15[/tex]



Answer :

To determine the value of [tex]\( a \)[/tex] in the proportion [tex]\(\frac{3}{5} = \frac{a+5}{25}\)[/tex], we can solve this using the method of cross-multiplication.

Here are the step-by-step calculations:

1. Start with the given proportion:
[tex]\[ \frac{3}{5} = \frac{a+5}{25} \][/tex]

2. Cross-multiply to eliminate the fractions:
[tex]\[ 3 \times 25 = 5 \times (a + 5) \][/tex]

3. Perform the multiplications:
[tex]\[ 75 = 5a + 25 \][/tex]

4. Subtract 25 from both sides to isolate the term containing [tex]\( a \)[/tex]:
[tex]\[ 75 - 25 = 5a \][/tex]
[tex]\[ 50 = 5a \][/tex]

5. Divide both sides by 5 to solve for [tex]\( a \)[/tex]:
[tex]\[ 50 \div 5 = a \][/tex]
[tex]\[ a = 10 \][/tex]

So, the value of [tex]\( a \)[/tex] is [tex]\( \boxed{10} \)[/tex].