Answered

A car is moving at [tex]$12 \, \text{m/s}$[/tex] and has a mass of 600 kg. What is the kinetic energy of the car? (Formula: [tex]$KE = \frac{1}{2}mv^2$[/tex])

A. [tex][tex]$36,300 \, \text{J}$[/tex][/tex]
B. [tex]$43,200 \, \text{J}$[/tex]
C. [tex]$72,600 \, \text{J}$[/tex]
D. [tex][tex]$86,400 \, \text{J}$[/tex][/tex]



Answer :

To determine the kinetic energy of the car, we use the kinetic energy formula:

[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]

where:
- [tex]\( KE \)[/tex] is the kinetic energy,
- [tex]\( m \)[/tex] is the mass of the car,
- [tex]\( v \)[/tex] is the velocity of the car.

Given:
- [tex]\( m = 600 \, \text{kg} \)[/tex]
- [tex]\( v = 12 \, \text{m/s} \)[/tex]

We substitute these values into the formula:

[tex]\[ KE = \frac{1}{2} \times 600 \, \text{kg} \times (12 \, \text{m/s})^2 \][/tex]

First, compute the square of the velocity:

[tex]\[ (12 \, \text{m/s})^2 = 144 \, \text{(m/s)}^2 \][/tex]

Next, multiply the mass by the squared velocity:

[tex]\[ 600 \, \text{kg} \times 144 \, \text{(m/s)}^2 = 86,400 \, \text{kg} \cdot \text{m}^2 \cdot \text{s}^{-2} = 86,400 \, \text{J} \][/tex]

Now, multiply by [tex]\(\frac{1}{2}\)[/tex]:

[tex]\[ KE = \frac{1}{2} \times 86,400 \, \text{J} = 43,200 \, \text{J} \][/tex]

Therefore, the kinetic energy of the car is [tex]\( 43,200 \, \text{J} \)[/tex].

Thus, the correct answer is:

[tex]\[ 43,200 \, \text{J} \][/tex]