To determine the sled's potential energy, we can use the formula for gravitational potential energy:
[tex]\[ PE = m \cdot g \cdot h \][/tex]
Where:
- [tex]\( PE \)[/tex] is the potential energy,
- [tex]\( m \)[/tex] is the mass of the object (in kilograms),
- [tex]\( g \)[/tex] is the acceleration due to gravity (in meters per second squared, [tex]\( m/s^2 \)[/tex]),
- [tex]\( h \)[/tex] is the height (in meters).
Given:
- The mass [tex]\( m = 45 \)[/tex] kg,
- The acceleration due to gravity [tex]\( g = 9.8 \, m/s^2 \)[/tex],
- The height [tex]\( h = 2 \)[/tex] meters.
Now, substituting the given values into the formula:
[tex]\[ PE = 45 \, \text{kg} \times 9.8 \, m/s^2 \times 2 \, \text{m} \][/tex]
When we multiply these numbers together:
[tex]\[ PE = 45 \times 9.8 \times 2 \][/tex]
[tex]\[ PE = 882 \, \text{J} \][/tex]
Therefore, the sled's potential energy is 882 joules.
So, the correct answer is:
[tex]\[ \boxed{882 \, \text{J}} \][/tex]