The data:

\begin{tabular}{|l|c|c|c|c|}
\hline
& \begin{tabular}{c}
Black \\
Fur and \\
Black \\
Eyes
\end{tabular}
& \begin{tabular}{c}
Black \\
Fur and \\
Red \\
Eyes
\end{tabular}
& \begin{tabular}{c}
White \\
Fur and \\
Black \\
Eyes
\end{tabular}
& \begin{tabular}{c}
White \\
Fur and \\
Red \\
Eyes
\end{tabular}
\\
\hline
\begin{tabular}{l}
Predicted \\
Fraction
\end{tabular}
& [tex]$\square / 16$[/tex]
& [tex]$\square / 16$[/tex]
& [tex]$\square / 16$[/tex]
& [tex]$\square / 16$[/tex]
\\
\hline
\end{tabular}



Answer :

Let's determine the predicted fractions for each category to complete the provided table. Here’s the step-by-step breakdown to find those fractions:

1. Category 1: Black Fur and Black Eyes

The predicted fraction for this category is [tex]\( \frac{9}{16} \)[/tex].

2. Category 2: Black Fur and Red Eyes

The predicted fraction for this category is [tex]\( \frac{3}{16} \)[/tex].

3. Category 3: White Fur and Black Eyes

The predicted fraction for this category is [tex]\( \frac{3}{16} \)[/tex].

4. Category 4: White Fur and Red Eyes

The predicted fraction for this category is [tex]\( \frac{1}{16} \)[/tex].

Now, plug these values into the table:

[tex]\[ \begin{tabular}{|l|c|c|c|c|} \hline & \begin{tabular}{c} Black \\ Fur and \\ Black \\ Eyes \end{tabular} & \begin{tabular}{c} Black \\ Fur and \\ Red \\ Eyes \end{tabular} & \begin{tabular}{c} White \\ Fur and \\ Black \\ Eyes \end{tabular} & \begin{tabular}{c} White \\ Fur and \\ Red \\ Eyes \end{tabular} \\ \hline \begin{tabular}{l} Predicted \\ Fraction \end{tabular} & $\frac{9}{16}$ & $\frac{3}{16}$ & $\frac{3}{16}$ & $\frac{1}{16}$ \\ \hline \end{tabular} \][/tex]

So, the table has been filled out accordingly with the predicted fractions for each category.