What is the simplified value of the expression below?

[tex]\[ \frac{4(-8+4.5)}{6.25+(-8.25)} \][/tex]

A. [tex]\(-25\)[/tex]
B. [tex]\(-7\)[/tex]
C. [tex]\(7\)[/tex]
D. [tex]\(25\)[/tex]



Answer :

To simplify the expression given by

[tex]\[ \frac{4(-8 + 4.5)}{6.25 + (-8.25)} \][/tex]

we can follow these step-by-step calculations:

1. Calculate the value inside the parentheses in the numerator:

[tex]\[ -8 + 4.5 = -3.5 \][/tex]

2. Multiply this result by 4:

[tex]\[ 4 \times (-3.5) = -14.0 \][/tex]

So the numerator of the expression is [tex]\(-14.0\)[/tex].

3. Calculate the value inside the parentheses in the denominator:

[tex]\[ 6.25 + (-8.25) = 6.25 - 8.25 = -2.0 \][/tex]

So the denominator of the expression is [tex]\(-2.0\)[/tex].

4. Divide the numerator by the denominator:

[tex]\[ \frac{-14.0}{-2.0} = 7.0 \][/tex]

Thus, the simplified value of the expression is:

[tex]\[ 7 \][/tex]

Given the multiple choice options are [tex]$-25$[/tex], [tex]$-7$[/tex], [tex]$7$[/tex], and [tex]$25$[/tex], the correct answer is [tex]\(7\)[/tex].