Select the correct answer.

What are the horizontal asymptote and [tex]$y$[/tex]-intercept of the function [tex]$f(x) = 6^x$[/tex]?

A. Asymptote: [tex]$y=1$[/tex], [tex]$y$[/tex]-intercept: [tex]$(0,1)$[/tex]
B. Asymptote: [tex]$y=0$[/tex], [tex]$y$[/tex]-intercept: [tex]$(0,1)$[/tex]
C. Asymptote: [tex]$y=1$[/tex], [tex]$y$[/tex]-intercept: [tex]$(0,6)$[/tex]
D. Asymptote: [tex]$y=0$[/tex], [tex]$y$[/tex]-intercept: [tex]$(0,6)$[/tex]



Answer :

To determine the horizontal asymptote and the [tex]\( y \)[/tex]-intercept of the function [tex]\( f(x) = 6^x \)[/tex], follow these steps:

### Horizontal Asymptote

1. Definition of Asymptote: A horizontal asymptote is a horizontal line that the graph of a function approaches as the input ([tex]\( x \)[/tex]) either goes to positive infinity ([tex]\( x \to \infty \)[/tex]) or negative infinity ([tex]\( x \to -\infty \)[/tex]).
2. Behavior of [tex]\( 6^x \)[/tex] as [tex]\( x \to \infty \)[/tex]: Notice that as [tex]\( x \to \infty \)[/tex], [tex]\( 6^x \)[/tex] grows without bound, becoming very large.
3. Behavior of [tex]\( 6^x \)[/tex] as [tex]\( x \to -\infty \)[/tex]: As [tex]\( x \to -\infty \)[/tex], [tex]\( 6^x \)[/tex] approaches 0 because any positive base raised to an increasingly negative power will approach zero.

Thus, the horizontal asymptote is [tex]\( y = 0 \)[/tex].

### [tex]\( y \)[/tex]-Intercept

1. Definition of [tex]\( y \)[/tex]-Intercept: The [tex]\( y \)[/tex]-intercept is the point where the graph of the function crosses the [tex]\( y \)[/tex]-axis. This occurs when [tex]\( x = 0 \)[/tex].
2. Calculation of [tex]\( y \)[/tex]-Intercept: Evaluate [tex]\( f(0) \)[/tex]:
[tex]\[ f(0) = 6^0 = 1 \][/tex]
Therefore, the function crosses the [tex]\( y \)[/tex]-axis at the point [tex]\( (0, 1) \)[/tex].

The correct answers are:
- Horizontal asymptote: [tex]\( y = 0 \)[/tex]
- [tex]\( y \)[/tex]-intercept: [tex]\( (0, 1) \)[/tex]

Given the options, the correct choice is:

B. asymptote: [tex]\( y = 0 \)[/tex]
[tex]\( y \)[/tex]-intercept: [tex]\( (0, 1) \)[/tex]