Question 14 (Multiple Choice, Worth 2 points)

Triangle [tex]$UVW$[/tex] has vertices at [tex]$U(-2,0), V(-3,1), W(-3,3)$[/tex]. Determine the vertices of the image [tex]$U^{\prime} V^{\prime} W^{\prime}$[/tex].

A. [tex]$U^{\prime}(0,-2), V^{\prime}(-1,-3), W^{\prime}(-3,-3)$[/tex]
B. [tex]$U^{\prime}(0,-2), V^{\prime}(1,-3), W^{\prime}(3,-3)$[/tex]
C. [tex]$U^{\prime}(2,0), V^{\prime}(3,-1), W^{\prime}(3,-3)$[/tex]
D. [tex]$U^{\prime}(-1,0), V^{\prime}(-3,0), W^{\prime}(3,-3)$[/tex]



Answer :

Given the problem, we need to determine which set of vertices represents the correct image of the triangle [tex]\(UVW\)[/tex] after a rotation. The original vertices of the triangle are:

[tex]\[ U(-2, 0), \quad V(-3, 1), \quad W(-3, 3) \][/tex]

We are given four options for the vertices of the rotated image [tex]\(U^{\prime} V^{\prime} W^{\prime}\)[/tex]:

1. [tex]\( U^{\prime}(0, -2), \quad V^{\prime}(-1, -3), \quad W^{\prime}(-3, -3) \)[/tex]
2. [tex]\( U^{\prime}(0, -2), \quad V^{\prime}(1, -3), \quad W^{\prime}(3, -3) \)[/tex]
3. [tex]\( U^{\prime}(2, 0), \quad V^{\prime}(3, -1), \quad W^{\prime}(3, -3) \)[/tex]
4. [tex]\( U^{\prime}(-1, 0), \quad V^{\prime}(-3, 0), \quad W^{\prime}(3, -3) \)[/tex]

Now, let’s determine the correct set of vertices [tex]\(U^{\prime}, V^{\prime}, W^{\prime}\)[/tex] that matches the image of the original triangle after rotation. After rotation, the vertices are given as:

[tex]\[ U^{\prime}(0, -2), \quad V^{\prime}(1, -3), \quad W^{\prime}(3, -3) \][/tex]

Therefore, the correct option is:

2. [tex]\( U^{\prime}(0, -2), \quad V^{\prime}(1, -3), \quad W^{\prime}(3, -3) \)[/tex]