Rewrite the following question or task so that it is easier to read.
Fix any grammar or spelling errors.
Remove phrases that are not part of the question.
Do not remove or change LaTeX formatting.
Do not change or remove [tex] [/tex] tags.
Do not translate the question or any part of the question.
If the question is nonsense, rewrite it so that it makes sense.
-----
Determine whether the following statement is true or false:
[tex]$\left|\begin{array}{lll}
1 & bc & b+c \\
1 & ca & c+a \\
1 & ab & a+b
\end{array}\right|
=
\left|\begin{array}{lll}
1 & a & a^2 \\
1 & b & b^2 \\
1 & c & c^2
\end{array}\right|$[/tex]
-----

Response:



Answer :

To solve the problem, we need to evaluate the determinants of the two given [tex]\(3 \times 3\)[/tex] matrices and check if they are equal to each other.

The first matrix is:
[tex]\[ \begin{vmatrix} 1 & bc & b+c \\ 1 & ca & c+a \\ 1 & ab & a+b \end{vmatrix} \][/tex]

The second matrix is:
[tex]\[ \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} \][/tex]

Let's evaluate the determinant of the first matrix:

### Determinant of the First Matrix
[tex]\[ \begin{vmatrix} 1 & bc & b+c \\ 1 & ca & c+a \\ 1 & ab & a+b \end{vmatrix} \][/tex]
To find this determinant, we will expand along the first row:
[tex]\[ = 1 \cdot \begin{vmatrix} ca & c+a \\ ab & a+b \end{vmatrix} - bc \cdot \begin{vmatrix} 1 & c+a \\ 1 & a+b \end{vmatrix} + (b+c) \cdot \begin{vmatrix} 1 & ca \\ 1 & ab \end{vmatrix} \][/tex]

Evaluating the [tex]\(2\times 2\)[/tex] determinants inside:
1. [tex]\[ \begin{vmatrix} ca & c+a \\ ab & a+b \end{vmatrix} = ca(a+b) - ab(c+a) = ca \cdot a + ca \cdot b - ab \cdot c - ab \cdot a = a^2c + abc - abc - a^2b = a^2c - a^2b = a^2(c - b) \][/tex]

2. [tex]\[ \begin{vmatrix} 1 & c+a \\ 1 & a+b \end{vmatrix} = 1 \cdot (a+b) - 1 \cdot (c+a) = (a+b) - (c+a) = b - c \][/tex]

3. [tex]\[ \begin{vmatrix} 1 & ca \\ 1 & ab \end{vmatrix} = 1 \cdot ab - 1 \cdot ca = ab - ca = ab - ca = a(b - c) \][/tex]

Putting these back into the determinant expansion, we get:
[tex]\[ = 1 \cdot a^2(c - b) - bc \cdot (b - c) + (b+c) \cdot a(b-c) \][/tex]
[tex]\[ = a^2(c - b) - bc \cdot (b - c) + a(b+c)(b-c) \][/tex]

Distribute and simplify each term:
[tex]\[ = a^2(c - b) - bc \cdot (b - c) + a(b^2 - bc + bc - c^2) \][/tex]
[tex]\[ = a^2(c - b) + bc(c - b) + a(b^2 - c^2) \][/tex]

Combine like terms:
[tex]\[ = a^2(c - b) + (bc) \cdot (c - b) + a(b^2 - c^2) \][/tex]

Factoring out common terms, we get:
[tex]\[ = (c - b)(a^2 + bc) + a(b^2 - c^2) \][/tex]

Finally, we can state the determinant of the first matrix is:
[tex]\[ - a^2b + a^2c + ab^2 - ac^2 - b^2c + bc^2 \][/tex]

### Determinant of the Second Matrix
[tex]\[ \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} \][/tex]

Similarly, we expand along the first row:
[tex]\[ = 1 \cdot \begin{vmatrix} b & b^2 \\ c & c^2 \end{vmatrix} - a \cdot \begin{vmatrix} 1 & b^2 \\ 1 & c^2 \end{vmatrix} + a^2 \cdot \begin{vmatrix} 1 & b \\ 1 & c \end{vmatrix} \][/tex]

Evaluating the [tex]\(2\times 2\)[/tex] determinants inside:
1. [tex]\[ \begin{vmatrix} b & b^2 \\ c & c^2 \end{vmatrix} = b \cdot c^2 - c \cdot b^2 = bc^2 - cb^2 = bc \cdot (c - b) \][/tex]

2. [tex]\[ \begin{vmatrix} 1 & b^2 \\ 1 & c^2 \end{vmatrix} = 1 \cdot c^2 - 1 \cdot b^2 = c^2 - b^2 \][/tex]

3. [tex]\[ \begin{vmatrix} 1 & b \\ 1 & c \end{vmatrix} = 1 \cdot c - 1 \cdot b = c - b \][/tex]

Putting these back into the determinant expansion, we get:
[tex]\[ = 1 \cdot bc \cdot (c - b) - a \cdot (c^2 - b^2) + a^2 \cdot (c - b) \][/tex]
[tex]\[ = bc \cdot (c - b) - a(c^2 - b^2) + a^2(c - b) \][/tex]

Distribute and simplify each term:
[tex]\[ = bc \cdot (c - b) - a(c^2 - b^2) + a^2(c - b) \][/tex]

Combine like terms:
[tex]\[ = bc(c - b) + a^2(c - b) - a(c^2 - b^2) \][/tex]

Factoring out common terms, we get:
[tex]\[ = (c - b)(bc + a^2) + a(b^2 - c^2) \][/tex]

Finally, we can state the determinant of the second matrix is:
[tex]\[ - a^2b + a^2c + ab^2 - ac^2 - b^2c + bc^2 \][/tex]

Both determinants simplify to the same expression:
[tex]\[ - a^2b + a^2c + ab^2 - ac^2 - b^2c + bc^2 \][/tex]

So, we can confirm that:
[tex]\[ \begin{vmatrix} 1 & bc & b+c \\ 1 & ca & c+a \\ 1 & ab & a+b \end{vmatrix} = \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} \][/tex]
Thus, the equality of the determinants holds.