What is the slope of the line represented by the equation [tex]$y=-\frac{1}{2} x+\frac{1}{4}$[/tex]?

A. [tex]-\frac{1}{2}[/tex]
B. [tex]-\frac{1}{4}[/tex]
C. [tex]\frac{1}{4}[/tex]
D. [tex]\frac{1}{2}[/tex]



Answer :

To determine the slope of the line represented by the equation [tex]\( y = -\frac{1}{2} x + \frac{1}{4} \)[/tex], follow these steps:

1. Identify the form of the line's equation:
- The given equation is in the slope-intercept form, which is [tex]\( y = mx + b \)[/tex].
- In this form, [tex]\( m \)[/tex] represents the slope and [tex]\( b \)[/tex] represents the y-intercept.

2. Extract the slope:
- Compare the given equation [tex]\( y = -\frac{1}{2} x + \frac{1}{4} \)[/tex] with the general slope-intercept form [tex]\( y = mx + b \)[/tex].
- Here, [tex]\( m = -\frac{1}{2} \)[/tex].

Therefore, the slope of the line is [tex]\( -\frac{1}{2} \)[/tex].

Among the provided options:
- [tex]\( -\frac{1}{2} \)[/tex] (Correct answer)
- [tex]\( -\frac{1}{4} \)[/tex]
- [tex]\( \frac{1}{4} \)[/tex]
- [tex]\( \frac{1}{2} \)[/tex]

The correct answer is [tex]\( -\frac{1}{2} \)[/tex].