What is the slope of the line represented by the equation [tex]$y=\frac{4}{5}x-3$[/tex]?

A. [tex]-3[/tex]
B. [tex]-\frac{4}{5}[/tex]
C. [tex]\frac{4}{5}[/tex]
D. [tex]3[/tex]



Answer :

To determine the slope of the line represented by the equation [tex]\( y = \frac{4}{5} x - 3 \)[/tex], we need to identify the coefficient of [tex]\( x \)[/tex].

This equation is given in the slope-intercept form [tex]\( y = mx + b \)[/tex], where:
- [tex]\( m \)[/tex] is the slope of the line,
- [tex]\( b \)[/tex] is the y-intercept (the value of [tex]\( y \)[/tex] when [tex]\( x = 0 \)[/tex]).

In the given equation [tex]\( y = \frac{4}{5} x - 3 \)[/tex], the coefficient [tex]\( \frac{4}{5} \)[/tex] is the slope. Therefore, [tex]\( m = \frac{4}{5} \)[/tex].

Thus, the slope of the line is [tex]\(\frac{4}{5}\)[/tex].

Among the given choices:
- [tex]\( -3 \)[/tex]
- [tex]\( -\frac{4}{5} \)[/tex]
- [tex]\( \frac{4}{5} \)[/tex]
- [tex]\( 3 \)[/tex]

The correct answer is:
[tex]\[ \frac{4}{5} \][/tex]