Solve the following equation using the distributive property.

[tex]\[ \frac{17}{3}\left(x-\frac{3}{2}\right)=-\frac{5}{4} \][/tex]

A. [tex]\(x=-\frac{23}{40}\)[/tex]

B. [tex]\(x=\frac{87}{68}\)[/tex]

C. [tex]\(x=-\frac{17}{40}\)[/tex]

D. [tex]\(x=\frac{47}{68}\)[/tex]



Answer :

To solve the equation [tex]\( \frac{17}{3}\left(x - \frac{3}{2}\right) = -\frac{5}{4} \)[/tex], we will follow these steps:

1. Distribute the fraction [tex]\(\frac{17}{3}\)[/tex] inside the parentheses:
[tex]\[ \frac{17}{3} \cdot x - \frac{17}{3} \cdot \frac{3}{2} \][/tex]
Simplify the multiplication:
[tex]\[ \frac{17}{3} \cdot \frac{3}{2} = \frac{17 \cdot 3}{3 \cdot 2} = \frac{17}{2} \][/tex]
So the equation becomes:
[tex]\[ \frac{17}{3}x - \frac{17}{2} = -\frac{5}{4} \][/tex]

2. Isolate the term involving [tex]\(x\)[/tex] by adding [tex]\(\frac{17}{2}\)[/tex] to both sides:
[tex]\[ \frac{17}{3}x = -\frac{5}{4} + \frac{17}{2} \][/tex]

To add the fractions, we need a common denominator. The common denominator for [tex]\(\frac{5}{4}\)[/tex] and [tex]\(\frac{17}{2}\)[/tex] is 4:
[tex]\[ \frac{17}{2} = \frac{17 \cdot 2}{2 \cdot 2} = \frac{34}{4} \][/tex]
Now the equation is:
[tex]\[ \frac{17}{3}x = -\frac{5}{4} + \frac{34}{4} = \frac{34 - 5}{4} = \frac{29}{4} \][/tex]

3. Solve for [tex]\(x\)[/tex] by dividing both sides by [tex]\(\frac{17}{3}\)[/tex]:
[tex]\[ x = \frac{\frac{29}{4}}{\frac{17}{3}} = \frac{29}{4} \cdot \frac{3}{17} = \frac{29 \cdot 3}{4 \cdot 17} = \frac{87}{68} \][/tex]
Simplifying [tex]\(\frac{87}{68}\)[/tex], if necessary:
[tex]\[ \frac{87}{68} \][/tex]
Since 87 and 68 have no common factors other than 1, this fraction is in simplest form.

So, the correct answer is:
[tex]\[ \boxed{\frac{87}{68}} \][/tex]

Thus, the answer is [tex]\( \text{B. } x = \frac{87}{68} \)[/tex].