Answer :
To determine the amount of Cobalt-60 remaining after 10 years, we need to use the given function [tex]\( f(t) = m(0.5)^{\frac{t}{n}} \)[/tex], where [tex]\( m \)[/tex] is the initial mass and [tex]\( n \)[/tex] is the half-life in years.
Given:
- Initial mass ([tex]\( m \)[/tex]) = 50 mg
- Half-life ([tex]\( n \)[/tex]) of Cobalt-60 = 5.3 years
- Time ([tex]\( t \)[/tex]) = 10 years
We need to substitute these values into the function:
[tex]\[ f(t) = 50 \left( 0.5 \right)^{\frac{10}{5.3}} \][/tex]
Firstly, compute the exponent:
[tex]\[ \frac{10}{5.3} \approx 1.8868 \][/tex]
Thus, the equation is:
[tex]\[ f(10) = 50 \left( 0.5 \right)^{1.8868} \][/tex]
The equation we formed is [tex]\( f(10) = 50(0.5)^{\frac{10}{5.3}} \)[/tex]. Now, calculating the remaining amount:
[tex]\[ f(10) \approx 50 \left( 0.5 \right)^{1.8868} \approx 13.52 \][/tex]
Therefore, the correct equation and remaining mass of the Cobalt-60 sample after 10 years are:
[tex]\[ f(10) = 50(0.5)^{\frac{10}{5.3}}; \approx 13.5 \text{ mg} \][/tex]
So, the correct answer in the options provided is:
[tex]\[ f(10)=50(0.5)^{\frac{10}{5.3}} ; 13.5 \text{ mg} \][/tex]
Given:
- Initial mass ([tex]\( m \)[/tex]) = 50 mg
- Half-life ([tex]\( n \)[/tex]) of Cobalt-60 = 5.3 years
- Time ([tex]\( t \)[/tex]) = 10 years
We need to substitute these values into the function:
[tex]\[ f(t) = 50 \left( 0.5 \right)^{\frac{10}{5.3}} \][/tex]
Firstly, compute the exponent:
[tex]\[ \frac{10}{5.3} \approx 1.8868 \][/tex]
Thus, the equation is:
[tex]\[ f(10) = 50 \left( 0.5 \right)^{1.8868} \][/tex]
The equation we formed is [tex]\( f(10) = 50(0.5)^{\frac{10}{5.3}} \)[/tex]. Now, calculating the remaining amount:
[tex]\[ f(10) \approx 50 \left( 0.5 \right)^{1.8868} \approx 13.52 \][/tex]
Therefore, the correct equation and remaining mass of the Cobalt-60 sample after 10 years are:
[tex]\[ f(10) = 50(0.5)^{\frac{10}{5.3}}; \approx 13.5 \text{ mg} \][/tex]
So, the correct answer in the options provided is:
[tex]\[ f(10)=50(0.5)^{\frac{10}{5.3}} ; 13.5 \text{ mg} \][/tex]