1.4.3 Quiz: Solving Linear Inequalities
Question 7 of 10

Solve [tex]$20x + 12 \geq 14x + 30$[/tex].

A. [tex]$x \leq 7$[/tex]
B. [tex][tex]$x \geq 7$[/tex][/tex]
C. [tex]$x \geq 3$[/tex]
D. [tex]$x \leq 3$[/tex]



Answer :

To solve the inequality [tex]\( 20x + 12 \geq 14x + 30 \)[/tex], we'll follow these steps:

1. Start with the original inequality:
[tex]\[ 20x + 12 \geq 14x + 30 \][/tex]

2. Isolate the variables on one side of the inequality.
Subtract [tex]\( 14x \)[/tex] from both sides:
[tex]\[ 20x - 14x + 12 \geq 14x - 14x + 30 \][/tex]
Simplifies to:
[tex]\[ 6x + 12 \geq 30 \][/tex]

3. Isolate the constant term on the other side of the inequality.
Subtract 12 from both sides:
[tex]\[ 6x + 12 - 12 \geq 30 - 12 \][/tex]
Simplifies to:
[tex]\[ 6x \geq 18 \][/tex]

4. Solve for [tex]\( x \)[/tex] by dividing both sides by the coefficient of [tex]\( x \)[/tex]:
[tex]\[ \frac{6x}{6} \geq \frac{18}{6} \][/tex]
Simplifies to:
[tex]\[ x \geq 3 \][/tex]

So, the solution to the inequality [tex]\( 20x + 12 \geq 14x + 30 \)[/tex] is:
[tex]\[ x \geq 3 \][/tex]

The correct answer is:

C. [tex]\( x \geq 3 \)[/tex]