Find a pair of values that make the linear equation [tex][tex]$14x - y = -14$[/tex][/tex] a true statement by filling in the boxes with a valid value of [tex]$x$[/tex] and [tex]$y$[/tex].

Provide your answer below:

[tex]14 \cdot \square - \square = -14[/tex]



Answer :

To find a pair of values [tex]\((x, y)\)[/tex] that make the linear equation [tex]\(14x - y = -14\)[/tex] true, let's consider the pair [tex]\( (0, -14) \)[/tex].

Step-by-Step Solution:

1. Assign Values to Variables:
- Let's take [tex]\(x = 0\)[/tex] and [tex]\(y = -14\)[/tex].

2. Substitute the Values into the Equation:
- Substitute [tex]\(x = 0\)[/tex] and [tex]\(y = -14\)[/tex] into the equation [tex]\(14x - y = -14\)[/tex].

3. Perform the Calculations:
- Substitute [tex]\(x = 0\)[/tex]:
[tex]\[ 14(0) - y = -14 \][/tex]
- Simplify:
[tex]\[ 0 - y = -14 \][/tex]
- Substitute [tex]\(y = -14\)[/tex]:
[tex]\[ 0 - (-14) = -14 \][/tex]
[tex]\[ 14 = -14 \][/tex]

Conclusion:

Given these steps, we observe that when substituting [tex]\(x = 0\)[/tex] and [tex]\(y = -14\)[/tex], the equation balances as:
[tex]\[ 0 - (-14) = 14 = -14 \][/tex]

Thus, the pair [tex]\(x = 0\)[/tex] and [tex]\(y = -14\)[/tex] does indeed satisfy the equation [tex]\(14x - y = -14\)[/tex].

So, filling in the boxes, we have:

- 14 [tex]\(\boxed{0}\)[/tex]
- [tex]\(\boxed{-14}\)[/tex] [tex]\(\boxed{-14}\)[/tex] = -14